skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Validation of gyrokinetic simulations in NSTX and projections for high-k turbulence measurements in NSTX-U

    An extensive validation effort performed for a modest-beta NSTX NBI-heated H-mode discharge predicts that electron thermal transport can be entirely explained by electron-scale turbulence fluctuations driven by the electron temperature gradient mode (ETG), both in conditions of strong and weak ETG turbulence drive. Thermal power-balance estimates computed by TRANSP as well as the shape of the high-k density fluctuation wavenumber spectrum and the fluctuation level ratio between strongly driven and weakly driven ETG-turbulence conditions can be matched by nonlinear gyrokinetic simulations and a synthetic diagnostic for high-k scattering. Linear gyrokinetic simulations suggest that the ion-scale instability in the weak ETGmore » condition is close to the critical threshold for the kinetic ballooning mode instability, and nonlinear ion-scale gyrokinetic simulations show that turbulence might be in a state reminiscent of a Dimits' shift regime, opening speculation on the role that ion-scale turbulence might play for the weak ETG condition. A simulation that matched all experimental constraints is chosen to project high-k turbulence spectra in NSTX-U, revealing that the new high-k system [R. Barchfeld et al., Rev. Sci. Instrum. 89, 10C114 (2018)] should be sensitive to density fluctuations from radially elongated streamer structures. In this study, two schemes are designed to characterize the radial and poloidal wavenumber dependence of the density fluctuation wavenumber power spectrum around the streamer peak, suggesting future high-k fluctuation measurements could be sensitive to an asymmetry in the kr spectrum introduced due to the presence of strong background flow shear.« less
  2. Impact of centrifugal drifts on ion turbulent transport

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
  3. Fluid moments of the nonlinear Landau collision operator

    An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. In conclusion, the proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.
  4. Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod

    New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less

Search for:
All Records
Author / Contributor
0000000241230094

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization