skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. MHz free electron laser x-ray diffraction and modeling of pulsed laser heated diamond anvil cell

    A new diamond anvil cell experimental approach has been implemented at the European x-ray Free Electron Laser, combining pulsed laser heating with MHz x-ray diffraction. In this report we use this setup to determine liquidus temperatures under extreme conditions, based on the determination of time-resolved crystallization. The focus is on a Fe-Si-O ternary system, relevant for planetary cores. This time-resolved diagnostic is complemented by a finite-element model, reproducing temporal temperature profiles measured experimentally using streaked optical pyrometry. This model calculates the temperature and strain fields by including (i) pressure and temperature dependencies of material properties, and (ii) the heat-induced thermalmore » stress, including feedback effect on material parameter variations. Making our model more realistic, these improvements are critical as they give 7000 K temperature differences compared to previous models. Laser intensities are determined by seeking minimal deviation between measured and modeled temperatures. Combining models and streak optical pyrometry data extends temperature determination below detection limit. The presented approach can be used to infer the liquidus temperature by the appearance of SiO2 diffraction spots. In addition, temperatures obtained by the model agree with crystallization temperatures reported for Fe–Si alloys. Our model reproduces the planetary relevant experimental conditions, providing temperature, pressure, and volume conditions. Those predictions are then used to determine liquidus temperatures at experimental timescales where chemical migration is limited. This synergy of novel time-resolved experiments and finite-element modeling pushes further the interpretation capabilities in diamond anvil cell experiments.« less
  2. A MHz X-ray diffraction set-up for dynamic compression experiments in the diamond anvil cell

    An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s−1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results frommore » rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s−1 was observed during the fast compression of Au, while a strain rate of ∼1100 s−1 was achieved during the rapid compression of N2 at 23 TPa s−1.« less
  3. Dynamic optical spectroscopy and pyrometry of static targets under optical and x-ray laser heating at the European XFEL

    Experiments accessing extreme conditions at x-ray free electron lasers (XFELs) involve rapidly evolving conditions of temperature. Here, we report time-resolved, direct measurements of temperature using spectral streaked optical pyrometry of x-ray and optical laser-heated states at the High Energy Density instrument of the European XFEL. This collection of typical experiments, coupled with numerical models, outlines the reliability, precision, and meaning of time dependent temperature measurements using optical emission at XFEL sources. Dynamic temperatures above 1500 K are measured continuously from spectrally- and temporally-resolved thermal emission at 450–850 nm, with time resolution down to 10–100 ns for 1–200 μs streak camera windows, using single shotmore » and integrated modes. Targets include zero-pressure foils free-standing in air and in vacuo, and high-pressure samples compressed in diamond anvil cell multi-layer targets. Radiation sources used are 20-fs hard x-ray laser pulses at 17.8 keV, in single pulses or 2.26 MHz pulse trains of up to 30 pulses, and 250-ns infrared laser single pulses. A range of further possibilities for optical measurements of visible light in x-ray laser experiments using streak optical spectroscopy are also explored, including for the study of x-ray induced optical fluorescence, which often appears as background in thermal radiation measurements. We establish several scenarios where combined emissions from multiple sources are observed and discuss their interpretation. Challenges posed by using x-ray lasers as non-invasive probes of the sample state are addressed.« less
  4. Toward using collective x-ray Thomson scattering to study C–H demixing and hydrogen metallization in warm dense matter conditions

    The insulator–metal transition in liquid hydrogen is an important phenomenon to understand the interiors of gas giants, such as Jupiter and Saturn, as well as the physical and chemical behavior of materials at high pressures and temperatures. Here, the path toward an experimental approach is detailed based on spectrally resolved x-ray scattering, tailored to observe and characterize hydrogen metallization in dynamically compressed hydrocarbons in the regime of carbon–hydrogen phase separation. With the help of time-dependent density functional theory calculations and scattering spectra from undriven carbon samples collected at the European x-ray Free-Electron Laser Facility (EuXFEL), we demonstrate sufficient data qualitymore » for observing C–H demixing and investigating the presence of liquid metallic hydrogen in future experiments using the reprated drive laser systems at EuXFEL.« less
  5. Direct LiF imaging diagnostics on refractive X-ray focusing at the EuXFEL High Energy Density instrument

    The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surfacemore » in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.« less
  6. Measurements of the momentum-dependence of plasmonic excitations in matter around 1 Mbar using an X-ray free electron laser

    We present measurements of the plasmon shift in shock-compressed matter as a function of momentum transfer beyond the Fermi wavevector using an X-ray Free Electron Laser. We eliminate the elastically scattered signal retaining only the inelastic plasmon signal. Our plasmon dispersion agrees with both the random phase approximation (RPA) and static Local Field Corrections (sLFC) for an electron gas at both zero and finite temperature. Further, we find the inclusion of electron-ion collisions through the Born-Mermin Approximation (BMA) to have no effect. Whilst we cannot distinguish between RPA and sLFC within our error bars, our data suggest that dynamic effectsmore » should be included for LFC and provide a route forward for higher resolution future measurements.« less
  7. Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the Matter in Extreme Conditions endstation at the Linac Coherent Light Source

    Here, we describe a setup for performing inelastic X-ray scattering and X-ray diffraction measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. This technique is capable of performing high-, meV-resolution measurements of dynamic ion features in both crystalline and non-crystalline materials.Afour-bounce silicon (533) monochromatorwas used in conjunction with three silicon (533) diced crystal analyzers to provide an energy resolution of 50meV over a range of 500 meV in single shot measurements. In addition to the instrument resolution function, we demonstrate the measurement of longitudinal acoustic phonon modes in polycrystalline diamond. Furthermore, this setup maymore » be combined with the high intensity laser drivers available at MEC to create warm dense matter and subsequently measure ion acoustic modes.« less
  8. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

    We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense matter studiesmore » of micrometer-sized samples in laser-plasma experiments.« less
  9. Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering

    We present results from time-resolved X-ray imaging and inelastic scattering on collective excitations. These data are then employed to infer the mass density evolution within laser-driven shock waves. In our experiments, thin carbon foils are first strongly compressed and then driven into a dense state by counter-propagating shock waves. The different measurements agree that the graphite sample is about twofold compressed when the shock waves collide, and a sharp increase in forward scattering indicates disassembly of the sample 1 ns thereafter. We can benchmark hydrodynamics simulations of colliding shock waves by the X-ray scattering methods employed.
  10. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    Here, we present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen andmore » focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].« less
...

Search for:
All Records
Author / Contributor
0000000235754449

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization