skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation [Introducing Nonstructural Ligands to Zirconia-like MOF Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation]

    Previous work has shown that introduction of hexafluoroacetylacetone (Facac) units as nonstructural ligands for the zirconia-like nodes of the eight-connected metal-organic framework (MOF), NU-1000, greatly alters the selectivity of node-supported oxy-nickel clusters for ethylene dimerization vs oligomerization. Here we i explore a related concept: tuning of support/catalyst interactions, and therefore, catalyst activity, via parallel installation of organic modifiers on the support itself. As modifiers we focused on para-substituted benzoates (R-BA; R = -NH2, -OCH3, -CH3, -H, -F, and -NO2) where the substituents were chosen to present similar steric demand, but varying electron-donating or electron-withdrawing properties. R-benzoate-engendered shifts in the node-basedmore » aqua O-H stretching frequency for NU-1000, as measured by DRIFTS (diffuse-reflectance infrared Fourier-transform spectroscopy), together with systematic shifts in Ni 2p peak energies, as measured by X-ray photoelectron spectroscopy, show that the electronic properties of the support can be modulated. The vibrational and electronic peak shifts correlate with the putative electron-withdrawing vs electron-donating strength of the para-substituted benzoate modifiers. Subsequent installation of node-supported, oxy-Ni(II) clusters for ethylene hydrogenation yield a compelling correlation between log (catalyst turnover frequency) and the electron donating or withdrawing character of the substituent of the benzoate units. Single crystal X-ray diffraction measurements reveal that each organic modifier makes use of only one of two available carboxylate oxygens to accomplish grafting. The remaining oxygen atom is, in principle, well positioned to coordinate directly to an installed Ni(II) ion. We postulate that the unanticipated direct coordination of the catalyst by the node-modifier (rather than indirect modifier-based tuning of support(node)/catalyst electronic interactions) is the primary source of the observed systematic tuning of hydrogenation activity. Here we suggest, however, that regardless of mechanism for communication with active-sites of MOF-supported catalysts, intentional elaboration of nodes via grafted, nonstructural organic species could prove to be a valuable general strategy for fine-tuning supported-catalyst activity and/or selectivity.« less
  2. Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework

    The Zr6-based metal–organic framework NU-1000 was successfully functionalized with candidate catalysts—MoSx units—via SIM (solvothermal deposition in MOFs) of molybdenum(VI), followed by reaction with H2S gas. The structure of the material, named MoSx-SIM, was characterized spectroscopically and through a single-crystal X-ray diffraction measurement. These measurements and others established that the catalyst is monometallic, with mixed oxygen and sulfur coordination, and that it forms from a MOF-node-supported molybdenum-based cluster featuring only oxy ligands. Notably, the formal potential for the MOF-grafted complex, like that for the metal–sulfur active site of hydrogenase, is nearly coincident with the formal potential for the hydrogen couple. Itsmore » effective concentration within the mesoporous MOF is several hundred millimolar, and its porous-framework-based immobilization/heterogenization obviates the need for aqueous solubility as a condition for use as a well-defined catalyst. MoSx-SIM was evaluated as an electrocatalyst for evolution of molecular hydrogen from aqueous acid. Although the MoSx-functionalized framework exhibits catalytic behavior, the highly insulating nature of the support inhibits high electrocatalytic performance. Introduction of an archetypal redox mediator (RM), methyl viologen (MV2+), resulted in more than 20-fold enhancement in its catalytic performance on a turnover frequency basis, implying efficient RM-assisted electron transfer to otherwise electrochemically non-addressable MoSx moieties. Electrochemical kinetic studies with additional viologens as mediators reveal an unexpected square-root dependence of overall reaction rate on mediator concentration, as well as sensitivity to the strength of RM•+ as a reductant. These observations, together with observations of potential-dependent H/D isotope effects and potential-dependent pH effects, provide useful insights into the catalysis mechanism and help to explain how the MOF-affixed monometallic catalyst can effectively catalyze a two-electron reduction reaction, i.e., hydrogen evolution from acidified water.« less
  3. Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework

    Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h–1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
  4. Atomic layer deposition of Cu( i ) oxide films using Cu( ii ) bis(dimethylamino-2-propoxide) and water

    To grow fIlms of Cu2O, bis-(dimethylamino-2-propoxide)Cu(II), or Cu(dmap), is used as an atomic layer deposition precursor using only water vapor as a co-reactant. Between 110 and 175 °C, a growth rate of 0.12 ± 0.02 Å per cycle was measured using an in situ quartz crystal microbalance (QCM). X-ray photoelectron spectroscopy (XPS) confirms the growth of metal– oxide films featuring Cu(I).
  5. Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications

    Metal–organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number ofmore » potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. Here, the challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers.« less
  6. Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation

    Ni(ii) ions have been deposited on the Zr6nodes of a metal–organic framework (MOF), UiO-66,viaan ALD-like process (ALD = atomic layer deposition).
  7. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

    Two new UiO-68 type of Zr-MOFs featuring redox non-innocent catechol-based linkers of different redox activities have been synthesized through a de novo mixed-linker strategy. Also, metalation of the MOFs with Cu(II) precursors triggers the reduction of Cu(II) by the phenyl-catechol groups to Cu(I) with the concomitant formation of semiquinone radicals as evidenced by EPR and XPS characterization. The MOF-supported catalysts are selective toward the allylic oxidation of cyclohexene and it is found that the presence of in situ-generated Cu(I) species exhibits enhanced catalytic activity as compared to a similar MOF with Cu(II) metalated naphthalenyl-dihydroxy groups. Here, this work unveils themore » importance of metal-support redox interactions in the catalytic activity of MOF-supported catalysts which are not easily accessible in traditional metal oxide supports.« less
...

Search for:
All Records
Author / Contributor
0000000232305955

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization