skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Predicting transcriptional responses to cold stress across plant species

    Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genomemore » assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.« less
  2. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana

    Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusionmore » proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.« less
  3. Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in Chlamydomonas

    Facing adverse conditions such as nitrogen (N) deprivation, microalgae enter cellular quiescence, a reversible cell cycle arrest with drastic changes in metabolism allowing cells to remain viable. Recovering from N deprivation and quiescence is an active and orderly process as we are showing here for Chlamydomonas reinhardtii. We conducted comparative transcriptomics on this alga to discern processes relevant to quiescence in the context of N deprivation and recovery following refeeding. A mutant with slow recovery from N deprivation, compromised hydrolysis of triacylglycerols7 (cht7), was included to better define the regulatory processes governing the respective transitions. We identified an ordered setmore » of biological processes with expression patterns that showed sequential reversal following N resupply and uncovered acclimation responses specific to the recovery phase. Biochemical assays and microscopy validated selected inferences made based on the transcriptional analyses. These comprise (1) the restoration of N source preference and cellular bioenergetics during the early stage of recovery; (2) flagellum-based motility in the mid to late stage of recovery; and (3) recovery phase-specific gene groups cooperating in the rapid replenishment of chloroplast proteins. In the cht7 mutant, a large number of programmed responses failed to readjust in a timely manner. Finally, evidence is provided for the involvement of the cAMP-protein kinase A pathway in gating the recovery. We conclude that the recovery from N deprivation represents not simply a reversal of processes directly following N deprivation, but a distinct cellular state.« less
  4. Chloroplast Membrane Remodeling during Freezing Stress Is Accompanied by Cytoplasmic Acidification Activating SENSITIVE TO FREEZING2

    Low temperature is a seasonal abiotic stress that restricts native plant ranges and crop distributions. Two types of lowtemperature stress can be distinguished: chilling and freezing. Much work has been done on the mechanisms by which chilling is sensed, but relatively little is known about how plants sense freezing. Recently, Arabidopsis (Arabidopsis thaliana) SENSITIVE TO FREEZING2 (SFR2) was identified as a protein that responds in a nontranscriptional manner to freezing. Here, we investigate the cellular conditions that allow SFR2 activation. Using a combination of isolated organelle, whole-tissue, and whole-plant assays, we provide evidence that SFR2 is activated by changes inmore » cytosolic pH and Mg2+. Manipulation of pH and Mg2+ in coldacclimated plants is shown to cause changes similar to those of freezing. We conclude that pH and Mg2+ are perceived as intracellular cues as part of the sensing mechanism for freezing conditions. This evidence provides a specific molecular mechanism to combat freezing.« less

Search for:
All Records
Author / Contributor
0000000230635002

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization