skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. The Raman gap and collisional absorption

    One of the long-standing puzzles observed in many laser-plasma experiments is the gap in the Raman backscattering spectrum. This gap is characterized by the absence of backscattered light between some critical wavelength and twice the incident laser wavelength. The latter is associated with the absolute Raman instability from the quarter-critical density surface. Supported by particle-in-cell (PIC) simulations, it is suggested that the gap can result from the collisional damping of the backscattered light. A linear analysis of the competition between the Raman growth rate and the damping rate in a non-homogenous plasma predicts the gap's existence and width as amore » function of the system's parameters. The theory is compared with the PIC simulations and past experiments.« less
  2. Reducing parametric backscattering by polarization rotation

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less
  3. Beyond nonlinear saturation of backward Raman amplifiers

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.
  4. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses


Search for:
All Records
Author / Contributor
000000018198896X

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization