skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes

    Nature's solar energy converters, the Photosystem I (PSI) and Photosystem II (PSII) reaction center proteins, flawlessly manage photon capture and conversion processes in plants, algae, and cyanobacteria to drive oxygenic water-splitting and carbon fixation. Herein, we utilize the native photosynthetic Z-scheme electron transport chain to drive hydrogen production from thylakoid membranes by directional electron transport to abiotic catalysts bound at the stromal end of PSI. Pt-nanoparticles readily self-assemble with PSI in spinach and cyanobacterial membranes as evidenced by light-driven H2 production in the presence of a mediating electron shuttle protein and the sacrificial electron donor sodium ascorbate. EPR characterization confirmsmore » placement of the Pt-nanoparticles on the acceptor end of PSI. In the absence of sacrificial reductant, H2 production at PSI occurs via coupling to light-induced PSII O2 evolution as confirmed by correlation of catalytic activity to the presence or absence of the PSII inhibitor DCMU. To create a more sustainable system, first-row transition metal molecular cobaloxime and nickel diphosphine catalysts were found to perform photocatalysis when bound in situ to cyanobacterial thylakoid membranes. Thus, the self-assembly of abiotic catalysts with photosynthetic membranes demonstrates a tenable method for accomplishing solar overall water splitting to generate H2, a renewable and clean fuel. This work benchmarks a significant advance toward improving photosynthetic efficiency for solar fuel production.« less
  2. Resolution of Electronic and Structural Factors Underlying Oxygen-Evolving Performance in Amorphous Cobalt Oxide Catalysts

    Non-noble-metal, thin-film oxides are widely investigated as promising catalysts for oxygen evolution reactions (OER). Amorphous cobalt oxide films electrochemically formed in the presence of borate (CoBi) and phosphate (CoPi) share a common cobaltate domain building block, but differ significantly in OER performance that derives from different electron–proton charge transport properties. Here, we use a combination of L edge synchrotron X-ray absorption (XAS), resonant X-ray emission (RXES), resonant inelastic X-ray scattering (RIXS), resonant Raman (RR) scattering, and high-energy X-ray pair distribution function (PDF) analyses that identify electronic and structural factors correlated to the charge transport differences for CoPi and CoBi. Themore » analyses show that CoBi is composed primarily of cobalt in octahedral coordination, whereas CoPi contains approximately 17% tetrahedral Co(II), with the remainder in octahedral coordination. Oxygen-mediated 4p–3d hybridization through Co–O–Co bonding was detected by RXES and the intersite dd excitation was observed by RIXS in CoBi, but not in CoPi. RR shows that CoBi resembles a disordered layered LiCoO2-like structure, whereas CoPi is amorphous. Distinct domain models in the nanometer range for CoBi and CoPi have been proposed on the basis of the PDF analysis coupled to XAS data. The observed differences provide information on electronic and structural factors that enhance oxygen evolving catalysis performance.« less
  3. Light-driven hydrogen production from Photosystem I-catalyst hybrids

    Solar energy conversion of water into environmentally clean fuels, such as hydrogen, offers one of the best long-term solutions for meeting future global energy needs. In photosynthesis, high quantum yield charge separation is achieved by a series of rapid, photoinitiated electron transfer steps that take place in proteins called reaction centers (RCs). Of current interest are new strategies that couple RC photochemistry to the direct synthesis of energy-rich molecules, offering opportunities to more directly tune the products of photosynthesis and potentially to increase solar energy conversion capacity. Innovative designs link RC photochemistry with synthetic molecular catalysts to create earth abundantmore » biohybrid complexes that use light to rapidly produce hydrogen from water.« less
  4. Light-driven hydrogen production from Photosystem I-catalyst hybrids


Search for:
All Records
Author / Contributor
0000000169263886

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization