skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Asymptotic quasisymmetric high-beta three-dimensional magnetohydrodynamic equilibria near axisymmetry

    Quasisymmetry (QS), a hidden symmetry of the magnetic field strength, is known to support nested flux surfaces and provide superior particle confinement in stellarators. In this work, we study the ideal magnetohydrodynamic (MHD) equilibrium and stability of high-beta plasma in a large-aspect-ratio stellarator. In particular, we show that the lowest-order description of a near-axisymmetric equilibrium vastly simplifies the problem of three-dimensional quasisymmetric MHD equilibria, which can be reduced to a standard elliptic Grad–Shafranov equation for the flux function. We show that any large-aspect-ratio tokamak, deformed periodically in the vertical direction, is a stellarator with approximate volumetric QS. We discuss exactmore » analytical solutions and numerical benchmarks. Finally, we discuss the ideal ballooning and interchange stability of some of our equilibrium configurations.« less
  2. Interplay of Three-Dimensional Instabilities and Magnetic Reconnection in the Explosive Onset of Magnetospheric Substorms

    Magnetospheric substorms are preceded by a slow growth phase of magnetic flux loading and current sheet thinning in the tail. Extensive data sets have provided evidence of the triggering of instabilities at substorm onset, including magnetic reconnection and ballooning instabilities. Using an exact kinetic magnetotail equilibrium we present particle-in-cell simulations which capture the explosive nature of substorms through a disruption of the dipolarization front by the ballooning instability. We use self-consistent particle tracking to determine the nonthermal particle acceleration mechanisms.
  3. Resonant instabilities mediated by drag and electrostatic interactions in laboratory and astrophysical dusty plasmas

    Dusty plasmas are known to support a diverse range of instabilities, including both generalizations of standard plasma instabilities and ones caused by effects specific to dusty systems. It has been recently demonstrated that a novel broad class of streaming instabilities, termed resonant drag instabilities (RDIs), can be attributed to a particular resonance phenomenon, manifested by defective eigenvalues of the linearized dust/fluid system. In this work, it is demonstrated that this resonance phenomenon is not unique to RDIs and can be used as a framework to understand a wider range of instabilities, termed resonant instabilities. Particular attention is given to themore » filamentary ionization instability seen in laboratory dusty plasmas and to the two-stream instability. It is shown that, due to the commonalities in underlying physics between the dust-ion-acoustic two-stream instability and the acoustic RDI, these instabilities should be relevant in strongly overlapping regimes in astrophysical dusty plasmas. Further, it is proposed that a similar overlap in the experimental accessibility of these modes (and of the filamentary instability) allows for the possibility of experimental investigation in the laboratory of complex and astrophysically relevant instability dynamics.« less
  4. Self-Consistent Simulation of the Excitation of Compressional Alfvén Eigenmodes and Runaway Electron Diffusion in Tokamak Disruptions

    Alfvénic modes in the current quench (CQ) stage of the tokamak disruption have been observed in experiments. In DIII-D the excitation of these modes is associated with the presence of high-energy runaway electrons (REs), and a strong mode excitation is often associated with the failure of RE plateau formation. In this work we present results of self-consistent kinetic-MHD simulations of RE-driven compressional Alfvén eigenmodes (CAEs) in DIII-D disruption scenarios, providing an explanation of the CQ modes. Simulation results reveal that high energy trapped REs can have resonance with the Alfvén mode through their toroidal precession motion, and the resonance frequencymore » is proportional to the energy of REs. The mode frequencies and their relationship with the RE energy are consistent with experimental observations. Further, the perturbed magnetic fields from the modes can lead to spatial diffusion of REs including the nonresonant passing ones, thus providing the theoretical basis for a potential approach for RE mitigation.« less
  5. Exact Calculation of Nonideal Fields Demonstrates Their Dominance of Injection in Relativistic Reconnection

    Magnetic reconnection is an important source of energetic particles in systems ranging from astrophysics to the laboratory. The large separation of spatiotemporal scales involved makes it critical to determine the minimum physical model containing the necessary physics for modeling particle acceleration. Here, by resolving the energy gain from ideal and nonideal magnetohydrodynamic electric fields self-consistently in kinetic particle-in-cell simulations of reconnection, we conclusively show the dominant role of the nonideal field for the early stage of energization known as injection. The importance of the nonideal field increases with magnetization, guide field, and in three dimensions, indicating its general importance formore » reconnection in natural astrophysical systems. We obtain the statistical properties of the injection process from the simulations, paving the way for the development of extended MHD models capable of accurately modeling particle acceleration in large-scale systems. The novel analysis method developed in this study can be applied broadly to give new insight into a wide range of processes in plasma physics.« less
  6. Do chaotic field lines cause fast reconnection in coronal loops?

    Over the past decade, Boozer has argued that three-dimensional (3D) magnetic reconnection fundamentally differs from two-dimensional reconnection due to the fact that the separation between any pair of neighboring field lines almost always increases exponentially over distance in a 3D magnetic field. According to Boozer, this feature makes 3D field-line mapping chaotic and exponentially sensitive to small non-ideal effects; consequently, 3D reconnection can occur without intense current sheets. We test Boozer's theory via ideal and resistive reduced magnetohydrodynamic simulations of the Boozer–Elder coronal loop model driven by sub-Alfvénic footpoint motions [A. H. Boozer and T. Elder, Phys. Plasmas 28, 062303more » (2021)]. In this work, our simulation results significantly differ from their predictions. The ideal simulation shows that Boozer and Elder under-predict the intensity of current density due to missing terms in their reduced model equations. Furthermore, resistive simulations of varying Lundquist numbers show that the maximal current density scales linearly rather than logarithmically with the Lundquist number.« less
  7. Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry

    Abstract Collisionless physics primarily determines the transport of fusion-born alpha particles in 3D equilibria. Several transport mechanisms have been implicated in stellarator configurations, including stochastic diffusion due to class transitions, ripple trapping, and banana drift-convective orbits. Given the guiding center dynamics in a set of six quasihelical and quasiaxisymmetric equilibria, we perform a classification of trapping states and transport mechanisms. In addition to banana drift convection and ripple transport, we observe substantial non-conservation of the parallel adiabatic invariant which can cause losses through diffusive banana tip motion. Furthermore, many lost trajectories undergo transitions between trapping classes on longer time scales,more » either with periodic or irregular behavior. We discuss possible optimization strategies for each of the relevant transport mechanisms. We perform a comparison between fast ion losses and metrics for the prevalence of mechanisms such as banana-drift convection (Velasco et al 2021 Nucl. Fusion 61 116059), transitioning orbits, and wide orbit widths. Quasihelical configurations are found to have natural protection against ripple-trapping and diffusive banana tip motion leading to a reduction in prompt losses.« less
  8. Reconnection-driven energy cascade in magnetohydrodynamic turbulence

    Magnetohydrodynamic turbulence regulates the transfer of energy from large to small scales in many astrophysical systems, including the solar atmosphere. We perform three-dimensional magnetohydrodynamic simulations with unprecedentedly large magnetic Reynolds number to reveal how rapid reconnection of magnetic field lines changes the classical paradigm of the turbulent energy cascade. By breaking elongated current sheets into chains of small magnetic flux ropes (or plasmoids), magnetic reconnection leads to a previously undiscovered range of energy cascade, where the rate of energy transfer is controlled by the growth rate of the plasmoids. As a consequence, the turbulent energy spectra steepen and attain amore » spectral index of -2.2 that is accompanied by changes in the anisotropy of turbulence eddies. The omnipresence of plasmoids and their consequences on, for example, solar coronal heating, can be further explored with current and future spacecraft and telescopes.« less
  9. Landau Modes are Eigenmodes of Stellar Systems in the Limit of Zero Collisions

    Abstract We consider the spectrum of eigenmodes in a stellar system dominated by gravitational forces in the limit of zero collisions. We show analytically and numerically using the Lenard–Bernstein collision operator that the Landau modes, which are not true eigenmodes in a strictly collisionless system (except for the Jeans unstable mode), become part of the true eigenmode spectrum in the limit of zero collisions. Under these conditions, the continuous spectrum of true eigenmodes in a collisionless system, also known as the Case–van Kampen modes, is eliminated. Furthermore, because the background distribution function in a weakly collisional system can exhibit significantmore » deviations from a Maxwellian distribution function over long times, we show that the spectrum of Landau modes can change drastically even in the presence of slight deviations from a Maxwellian, primarily through the appearance of weakly damped modes that may be otherwise heavily damped for a Maxwellian distribution. Our results provide important insights for developing statistical theories to describe thermal fluctuations in a stellar system, which are currently a subject of great interest for N -body simulations as well as observations of gravitational systems.« less
  10. Numerical study of $$\delta$$-function current sheets arising from resonant magnetic perturbations

    We report general three-dimensional toroidal ideal magnetohydrodynamic equilibria with a continuum of nested flux surfaces are susceptible to forming singular current sheets when resonant perturbations are applied. The presence of singular current sheets indicates that, in the presence of non-zero resistivity, magnetic reconnection will ensue, leading to the formation of magnetic islands and potentially regions of stochastic field lines when islands overlap. Numerically resolving singular current sheets in the ideal magnetohydrodynamics (MHD) limit has been a significant challenge. This work presents numerical solutions of the Hahm–Kulsrud–Taylor (HKT) problem, which is a prototype for resonant singular current sheet formation. The HKTmore » problem is solved by two codes: a Grad–Shafranov (GS) solver and the Stepped Pressure Equilibrium Code (SPEC) code. The GS solver has built-in nested flux surfaces with prescribed magnetic fluxes. The SPEC code implements multi-region relaxed magnetohydrodynamics (MRxMHD), whereby the solution relaxes to a Taylor state in each region while maintaining force balance across the interfaces between regions. As the number of regions increases, the MRxMHD solution appears to approach the ideal MHD solution assuming a continuum of nested flux surfaces. We demonstrate agreement between the numerical solutions obtained from the two codes through a convergence study.« less
...

Search for:
All Records
Author / Contributor
0000000164110178

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization