skip to main content

Search for: All records

Creators/Authors contains: "Wahl, D.E."
  1. Interferometric fringe maps are generated by accurately registering a pair of complex SAR images of the same scene imaged from two very similar geometries, and calculating the phase difference between the two images by averaging over a neighborhood of pixels at each spatial location. The phase difference (fringe) map resulting from this IFSAR operation is then unwrapped and used to calculate the height estimate of the imaged terrain. Although the method used to calculate interferometric fringe maps is well known, it is generally executed in a post-processing mode well after the image pairs have been collected. In that mode ofmore » operation, there is little concern about algorithm speed and the method is normally implemented on a single processor machine. This paper describes how the interferometric map generation is implemented on a distributed-memory parallel processing machine. This particular implementation is designed to operate on a 16 node Power-PC platform and to generate interferometric maps in near real-time. The implementation is able to accommodate large translational offsets, along with a slight amount of rotation which may exist between the interferometric pair of images. If the number of pixels in the IFSAR image is large enough, the implementation accomplishes nearly linear speed-up times with the addition of processors.« less
  2. A towed linear hydrophone array is subject to snakelike bending. If the array were processed as if it were truly linear, poor array gain coupled with a degraded source bearing estimate would result. The signal phase errors produced by sensor position uncertainty in passive sonar arrays are similar to those observed in Synthetic Aperture Radar (SAR) imagery. The Phase Gradient Autofocus (PGA) Algorithm has been shown to be a robust and effective method used to extract degrading phase errors prevalent in SAR imagery. This report shows that with slight modifications, the PGA algorithm can be applied to correct phase errorsmore » resulting from sensor position uncertainty introduced into linear-passive arrays. The results of the technique applied to simulated linear array data is also presented. 9 refs., 8 figs.« less
  3. No abstract prepared.
  4. All prior interferometric SAR imaging experiments to date dealt with pairwise processing. Simultaneous image collections from two antenna systems or two-pass single antenna collections are processed as interferometric pairs to extract corresponding pixel by pixel phase differences which encode terrain elevation height. The phase differences are wrapped values which must be unwrapped and scaled to yield terrain height. We propose two major classes of techniques that hold promise for robust multibaseline (multiple pair) interferometric SAR terrain elevation mapping. The first builds on the capability of a recently published method for robust weighted and unweighted least-squares phase unwrapping, while the secondmore » attacks the problem directly in a maximum likelihood (ML) formulation. We will provide several examples (actual and simulated SAR imagery) that illustrate the advantages and disadvantages of each method.« less
  5. The detection and refocus of moving targets in SAR imagery is of interest in a number of applications. In this paper the authors address the problem of refocusing a blurred signature that has by some means been identified as a moving target. They assume that the target vehicle velocity is constant, i.e., the motion is in a straight line with constant speed. The refocus is accomplished by application of a two-dimensional phase function to the phase history data obtained via Fourier transformation of an image chip that contains the blurred moving target data. By considering separately the phase effects ofmore » the range and cross-range components of the target velocity vector, they show how the appropriate phase correction term can be derived as a two-parameter function. They then show a procedure for estimating the two parameters, so that the blurred signature can be automatically refocused. The algorithm utilizes optimization of an image domain contrast metric. They present results of refocusing moving targets in real SAR imagery by this method.« less
  6. In this paper we describe a new method for creating three-dimensional images using pairs of synthetic aperture radar (SAR) images obtained from a unique collection geometry. This collection mode involves synthetic apertures that have a common center. In this sense the illumination directions for the two SAR images are the same, while the slant planes are at different spatial orientations. The slant plane orientations give rise to cross-range layover (fore-shortening) components in the two images that are of equal magnitude but opposite directions. This differential cross-range layover is therefore proportional to the elevation of a given target, which is completelymore » analogous to the situation in stereo optical imaging, wherein two film planes (corresponding to the two slant planes) result in elevation-dependent parallax. Because the two SAR collections are coherent in this particular collection mode, the images have the same speckle patterns throughout. As a result, the images may be placed into stereo correspondence via calculation of correlations between micro-patches of the complex image data. The resulting computed digital stereo elevation map can be quite accurate. Alternatively, an analog anaglyph can be displayed for 3-D viewing, avoiding the necessity of the stereo correspondence calculation.« less
  7. In a typical interferometric synthetic aperture radar (IFSAR) system employed for terrain elevation mapping, terrain height is estimated from phase difference data obtained from two phase centers separated spatially in the cross-track direction. In this paper we show how the judicious design of a three phase center IFSAR renders phase unwrapping, i.e., the process of estimating true continuous phases from principal values of phase (wrapped modulo 2{pi}), a much simpler process than that inherent in traditional algorithms. With three phase centers, one IFSAR baseline can be chosen to be relatively small (two of the phase centers close together) so thatmore » all of the scene`s terrain relief causes less than one cycle of phase difference. This allows computation of a coarse height map without use of any form of phase unwrapping. The cycle number ambiguities in the phase data derived from the other baseline, chosen to be relatively large (two of the phase centers far apart), can then be resolved by reference to the heights computed from the small baseline data. This basic concept of combining phase data from one small and one large baseline to accomplish phase unwrapping has been previously employed in other interferometric problems, e.g., laser interferometry and direction-of-arrival determination from multiple element arrays, The new algorithm is shown to possess a certain form of immunity to corrupted interferometric phase data that is not inherent in traditional two-dimensional path-following phase unwrappers. This is because path-following algorithms must estimate, either implicity or explicity, those portions of the IFSAR fringe data where discontinuities in phase occur. Such discontinuties typically arise from noisy phase measurements derived from low radar return areas of the SAR imagery, e.g., shadows, or from areas of steep terrain slope.« less
  8. In this paper, the authors introduce a general formulation for wavefront curvature correction in spotlight-mode SAR images formed using the polar-formatting algorithm (PFA). This correction is achieved through the use of an efficient, image domain space-variant filter which is applied as a post-processing step to PFA. Wavefront curvature defocus effects occur in certain SAR collection modes that include imaging at close range, using low center frequency, and/or imaging very large scenes. The formulation is general in that it corrects for wavefront curvature in roadside as well as squinted collection modes, with no computational penalty for correcting squint-mode images. Algorithms suchmore » as the range migration technique (also known as seismic migration), and a recent enhancement known as frequency domain replication, FReD, have been developed to accommodate these wavefront curvature effects. However, they exhibit no clear computational advantage over space-variant post-filtering in conjunction with polar formatting (PF2). This paper will present the basic concepts of the formulation, and will provide computer results demonstrating the capabilities of space-variant post-filtering.« less
  9. Wavefront curvature defocus effects can occur in spotlight-mode SAR imagery when reconstructed via the well-known polar formatting algorithm (PFA) under certain scenarios that include imaging at close range, use of very low center frequency, and/or imaging of very large scenes. The range migration algorithm (RMA), also known as seismic migration, was developed to accommodate these wavefront curvature effects. However, the along-track upsampling of the phase history data required of the original version of range migration can in certain instances represent a major computational burden. A more recent version of migration processing, the Frequency Domain Replication and Downsampling (FReD) algorithm, obviatesmore » the need to upsample, and is accordingly more efficient. In this paper the authors demonstrate that the combination of traditional polar formatting with appropriate space-variant post-filtering for refocus can be as efficient or even more efficient than FReD under some imaging conditions, as demonstrated by the computer-simulated results in this paper. The post-filter can be pre-calculated from a theoretical derivation of the curvature effect. The conclusion is that the new polar formatting with post filtering algorithm (PF2) should be considered as a viable candidate for a spotlight-mode image formation processor when curvature effects are present.« less
  10. The recently introduced Phase Gradient Autofocus (PGA) algorithm is a non-parametric autofocus technique which has been shown to be quite effective for phase correction of Synthetic Aperture Radar (SAR) imagery. This paper will show that this powerful algorithm can be executed at near real-time speeds and also be implemented in a relatively small piece of hardware. A brief review of the PGA will be presented along with an overview of some critical implementation considerations. In addition, a demonstration of the PGA algorithm running on a 7 in. {times} 10 in. printed circuit board containing a TMS320C30 digital signal processing (DSP)more » chip will be given. With this system, using only the 20 range bins which contain the brightest points in the image, the algorithm can correct a badly degraded 256 {times} 256 image in as little as 3 seconds. Using all range bins, the algorithm can correct the image in 9 seconds. 4 refs., 2 figs.« less
Switch to Detail View for this search