skip to main content

Search for: All records

Creators/Authors contains: "McLendon, William Clarence,"
  1. Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less
  2. Abstract not provided.
  3. Abstract not provided.
  4. Abstract not provided.
  5. Abstract not provided.
  6. Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.
  7. Abstract not provided.
  8. Abstract not provided.
  9. No abstract prepared.
  10. The analysis of networked activities is dramatically more challenging than many traditional kinds of analysis. A network is defined by a set of entities (people, organizations, banks, computers, etc.) linked by various types of relationships. These entities and relationships are often uninteresting alone, and only become significant in aggregate. The analysis and visualization of these networks is one of the driving factors behind the creation of the Titan Toolkit. Given the broad set of problem domains and the wide ranging databases in use by the information analysis community, the Titan Toolkit's flexible, component based pipeline provides an excellent platform formore » constructing specific combinations of network algorithms and visualizations.« less
Switch to Detail View for this search