skip to main content

Search for: All records

Creators/Authors contains: "Ma, Tian J."
  1. Methods and apparatuses for analyzing a sequence of images for an object are disclosed herein. In a general embodiment, the method identifies a region of interest in the sequence of images. The object is likely to move within the region of interest. The method divides the region of interest in the sequence of images into sections and calculates signal-to-noise ratios for a section in the sections. A signal-to-noise ratio for the section is calculated using the section in the image, a prior section in a prior image to the image, and a subsequent section in a subsequent image to themore » image. The signal-to-noise ratios are for potential velocities of the object in the section. The method also selects a velocity from the potential velocities for the object in the section using a potential velocity in the potential velocities having a highest signal-to-noise ratio in the signal-to-noise ratios.« less
  2. Abstract not provided.
  3. A new method is introduced for real-time detection of transient change in scenes observed by staring sensors that are subject to platform jitter, pixel defects, variable focus, and other real-world challenges. The approach uses flexible statistical models for the scene background and its variability, which are continually updated to track gradual drift in the sensor's performance and the scene under observation. Two separate models represent temporal and spatial variations in pixel intensity. For the temporal model, each new frame is projected into a low-dimensional subspace designed to capture the behavior of the frame data over a recent observation window. Per-pixelmore » temporal standard deviation estimates are based on projection residuals. The second approach employs a simple representation of jitter to generate pixelwise moment estimates from a single frame. These estimates rely on spatial characteristics of the scene, and are used gauge each pixel's susceptibility to jitter. The temporal model handles pixels that are naturally variable due to sensor noise or moving scene elements, along with jitter displacements comparable to those observed in the recent past. The spatial model captures jitter-induced changes that may not have been seen previously. Change is declared in pixels whose current values are inconsistent with both models.« less
  4. A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene betweenmore » the current image frame and the reference image frame.« less
Switch to Detail View for this search