skip to main content

Search for: All records

Creators/Authors contains: "GEE,JAMES M."
  1. Methods of manufacturing back-contacted silicon solar cells fabricated using a gradient-driven solute transport process, such as thermomigration or electromigration, to create n-type conductive vias connecting the n-type emitter layer on the front side to n-type ohmic contacts located on the back side.
  2. Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ionmore » etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.« less
  3. A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmicmore » contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.« less
  4. Chemical Equilibrium calculations are presented that are relevant to the purification of molten silicon by gas-blowing. The equilibrium distributions of silicon, boron, phosphorus carbon and iron among the solid, liquid and gas phases are reported for a variety of added chemicals, temperatures and total pressures. The identities of the dominant chemical species for each element in each phase are also provided for these conditions. The added gases examined are O(2), air, water, wet air, HCl, Cl(2), Cl(2)/O(2), SiCl(4), NH(3), NH(4)OH, and NH(4)Cl. These calculations suggest possible purification schemes, although kinetic or transport limitations may prove to be significant
  5. The Sandia Photovoltaic Program conducted research in crystalline-silicon solar cells between 1986 and 2000 for the U.S. Department of Energy. This period saw rapid improvements in the fundamental understanding of c-Si materials and devices, improvements in c-Si PV manufacturing and control, and a rapid expansion of c-Si PV manufacturing capacity. Crystalline-silicon technology has provided the basis for PV to emerge as a serious option for global energy needs. The c-Si cell research at Sandia examined c-Si materials, devices, processing, and process integration. This report summarizes research conducted in this program over the past 15 years.
  6. No abstract prepared.
  7. A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.
  8. Sub-wavelength periodic texturing (gratings) of crystalline-silicon (c-Si) surfaces for solar cell applications can be designed for maximizing optical absorption in thin c-Si films. We have investigated c-Si grating structures using rigorous modeling, hemispherical reflectance, and internal quantum efficiency measurements. Model calculations predict almost {approximately}100% energy coupling into obliquely propagating diffraction orders. By fabrication and optical characterization of a wide range of 1D & 2D c-Si grating structures, we have achieved broad-band, low ({approximately} 5%) reflectance without an anti-reflection film. By integrating grating structures into conventional solar cell designs, we have demonstrated short-circuit current density enhancements of 3.4 and 4.1 mA/cm{supmore » 2} for rectangular and triangular 1D grating structures compared to planar controls. The effective path length enhancements due to these gratings were 2.2 and 1.7, respectively. Optimized 2D gratings are expected to have even better performance.« less
  9. No abstract prepared.
  10. The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grademore » polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.« less
Switch to Detail View for this search