skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technetium-99 cycling in maple trees: characterization of changes in chemical form

Journal Article · · Health Physics: the Radiation Safety Journal

Prior field studies near an old radioactive waste disposal site at Oak Ridge, TN, indicated that following root uptake, metabolism by deciduous trees rendered 99Tc less biogeochemically mobile than expected, based on chemistry of the pertechnetate (TcO4-) anion. Subsequently, the form of technetium (Tc) in maple tree (Acer sp.) sap, leaves, wood and forest leaf litter was characterized using one or more of the following methods: dialysis, physical fractionation, chemical extraction, gel permeation chromatography, enzymatic extraction, or thin layer chromatography (TLC) on silica gel. Chromatography (Sephadex G-25) of TcO4- incubated in vitro with tree sap showed it to behave similar to TcO4- anion. When labeled wood and leaf tissues were processed using a tissue homogenizer, 15% and 40%, respectively, of the Tc was solubilized into phosphate buffer. Most (65% to 80%) of the solubilized Tc passing a 0.45-micron filter also passed through an ultrafiltration membrane with a nominal molecular weight cutoff of 10,000 atomic mass units (amu). A majority (72% to 80%) of the Tc in wood could be chemically removed by successive extractions with ethanol, water and weak mineral acid. These same extractants removed only 23% to 31% of the Tc from maple leaves or forest floor leaf litter. Most of the Tc in leaves and leaf litter was removed only by strongly alkaline reagents typically used to release structural polysaccharides (hemicelluloses) from plant tissues. Chromatography (Sephadex G-25) of the ethanol-water extract from wood and the alkaline extract from leaves demonstrated that Tc in these extracts was not principally TcO4- but was complexed with molecules > 1000 amu. Incubations of leaf and wood homogenates with protease approximately doubled the amount of Tc released from contaminated tissues. Ultrafiltration of protease-solubilized Tc from leaves and wood showed that 40% and 93%, respectively, of the Tc was >10,000 amu. TLC of the <10,000 amu fraction indicated the presence of TcO4- in wood but not in leaves. In the leaf, TcO4- is converted to less soluble forms apparently associated with structural components of leaf cell walls. This conversion explains why 99Tc is not easily leached by rainfall from tree foliage and why 99Tc appears to accumulate in forest floor leaf litter layers at the Oak Ridge study site.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge National Environmental Research Park
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
989660
Journal Information:
Health Physics: the Radiation Safety Journal, Vol. 57, Issue 2
Country of Publication:
United States
Language:
English