skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphology of Air Nanobubbles Trapped atHydrophobic Nanopatterned Surfaces

Journal Article · · Nano Letters
DOI:https://doi.org/10.1021/nl9042246· OSTI ID:988770

The details of air nanobubble trapping at the interface between water and a nanostructured hydrophobic silicon surface are investigated using X-ray scattering and contact angle measurements. Large-area silicon surfaces containing hexagonally packed, 20 nm wide hydrophobic cavities provide ideal model surfaces for studying the morphology of air nanobubbles trapped inside cavities and its dependence on the cavity depth. Transmission small-angle X-ray scattering measurements show stable trapping of air inside the cavities with a partial water penetration of 5-10 nm into the pores, independent of their large depth variation. This behavior is explained by consideration of capillary effects and the cavity geometry. For parabolic cavities, the liquid can reach a thermodynamically stable configuration - a nearly planar nanobubble meniscus - by partially penetrating into the pores. This microscopic information correlates very well with the macroscopic surface wetting behavior.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
988770
Report Number(s):
BNL-90935-2010-JA; R&D Project: PO-034; KC0101010; TRN: US201019%%128
Journal Information:
Nano Letters, Vol. 10, Issue 4; ISSN 1530-6984
Country of Publication:
United States
Language:
English