skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing

Conference ·
OSTI ID:986811

Reconfigurable computing (RC) is being investigated as a hardware solution for improving time-to-solution for biomolecular simulations. A number of popular molecular dynamics (MD) codes are used to study various aspects of biomolecules. These codes are now capable of simulating nanosecond time-scale trajectories per day on conventional microprocessor-based hardware, but biomolecular processes often occur at the microsecond time-scale or longer. A wide gap exists between the desired and achievable simulation capability; therefore, there is considerable interest in alternative algorithms and hardware for improving the time-to-solution of MD codes. The fine-grain parallelism provided by Field Programmable Gate Arrays (FPGA) combined with their low power consumption make them an attractive solution for improving the performance of MD simulations. In this work, we use an FPGA-based coprocessor to accelerate the compute-intensive calculations of LAMMPS, a popular MD code, achieving up to 5.5 fold speed-up on the non-bonded force computations of the particle mesh Ewald method and up to 2.2 fold speed-up in overall time-to-solution, and potentially an increase by a factor of 9 in power-performance efficiencies for the pair-wise computations. The results presented here provide an example of the multi-faceted benefits to an application in a heterogeneous computing environment.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences (NCCS)
Sponsoring Organization:
Work for Others (WFO)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
986811
Resource Relation:
Conference: 7th ACM international conference on Computing frontiers, Bertinoro, Italy, 20100517, 20100517
Country of Publication:
United States
Language:
English