skip to main content

Title: Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $$7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and intended to meet multiple purposes.
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
TRN: US201014%%573
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Org:
Environmental Energy Technologies Division
Country of Publication:
United States