skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size-resolved parameterization of primary organic carbon in fresh marine aerosols

Conference ·
OSTI ID:982162

Marine aerosols produced by the bursting of artificially generated bubbles in natural seawater are highly enriched (2 to 3 orders of magnitude based on bulk composition) in marine-derived organic carbon (OC). Production of size-resolved particulate OC was parameterized based on a Langmuir kinetics-type association of OC to bubble plumes in seawater and resulting aerosol as constrained by measurements of aerosol produced from highly productive and oligotrophic seawater. This novel approach is the first to account for the influence of adsorption on the size-resolved association between marine aerosols and OC. Production fluxes were simulated globally with an eight aerosol-size-bin version of the NCAR Community Atmosphere Model (CAM v3.5.07). Simulated number and inorganic sea-salt mass production fell within the range of published estimates based on observationally constrained parameterizations. Because the parameterization does not consider contributions from spume drops, the simulated global mass flux (1.5 x 10{sup 3} Tg y{sup -1}) is near the lower limit of published estimates. The simulated production of aerosol number (2.1 x 10{sup 6} cm{sup -2} s{sup -1}) and OC (49 Tg C y{sup -1}) fall near the upper limits of published estimates and suggest that primary marine aerosols may have greater influences on the physiochemical evolution of the troposphere, radiative transfer and climate, and associated feedbacks on the surface ocean than suggested by previous model studies.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
982162
Resource Relation:
Conference: AGU Fall Meeting, San Francisco, CA, USA, 20091214, 20091214
Country of Publication:
United States
Language:
English