skip to main content

Title: Investigation of biologically-designed metal-specific chelators for potential metal recovery and waste remediation applications.

Bacteria, algae and plants produce metal-specific chelators to capture required nutrient or toxic trace metals. Biological systems are thought to be very efficient, honed by evolutionary forces over time. Understanding the approaches used by living organisms to select for specific metals in the environment may lead to design of cheaper and more effective approaches for metal recovery and contaminant-metal remediation. In this study, the binding of a common siderophore, desferrioxamine B (DFO-B), to three aqueous metal cations, Fe(II), Fe(III), and UO{sub 2}(VI) was investigated using classical molecular dynamics. DFO-B has three acetohydroxamate groups and a terminal amine group that all deprotonate with increasing pH. For all three metals, complexes with DFO-B (-2) are the most stable and favored under alkaline conditions. Under more acidic conditions, the metal-DFO complexes involve chelation with both acetohydroxamate and acetylamine groups. The approach taken here allows for detailed investigation of metal binding to biologically-designed organic ligands.
Authors:
;
Publication Date:
OSTI Identifier:
976949
Report Number(s):
SAND2009-0239
TRN: US201009%%255
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Research Org:
Sandia National Laboratories
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; ALGAE; AMINES; BACTERIA; CATIONS; DESIGN; NUTRIENTS; WASTES Chelates-Analysis.; Ligand binding (Biochemistry); Chelation.