skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006)

Journal Article · · Journal of Geophysical Research. D. (Atmospheres), 114(D21203)

Data from the Tropical Warm Pool I5 nternational Cloud Experiment (TWPICE) were used to evaluate two suites of high-resolution (4-7 km, convection-resolving) simulations of the Advanced Research Weather Research and Forecasting (WRF) model with a focus on the performance of different cloud microphysics (MP) schemes. The major difference between these two suites of simulations is with and without the reinitializing process. Whenreinitialized every three days, the four cloud MP schemes evaluated can capture the general profiles of cloud fraction, temperature, water vapor, winds, and cloud liquid and ice water content (LWC and IWC, respectively). However, compared with surface measurements of radiative and moisture fluxes and satellite retrieval of top-of-the-atmosphere (TOA) fluxes, disagreements do exist. Large discrepancies with observed LWC and IWC and derived radiative heating profiles can be attributed to both the limitations of the cloud property retrievals and model performance. The simulated precipitation also shows a wide range of uncertainty as compared with observations, which could be caused by the cloud MP schemes, complexity of land-sea configuration, and the high temporal and spatial variability. In general, our result indicates the importance of large-scale initial and lateral boundary conditions in re-producing basic features of cloudiness and its vertical structures. Based on our case study, we find overall the six-hydrometer single-moment MP scheme(WSM6) [Hong and Lim, 2006] in the WRF model si25 mulates the best agree- ment with the TWPICE observational analysis.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
973431
Report Number(s):
PNNL-SA-61995; KP1701000; TRN: US201006%%254
Journal Information:
Journal of Geophysical Research. D. (Atmospheres), 114(D21203), Vol. 114
Country of Publication:
United States
Language:
English