skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seasonal Contrasts in the Surface Energy Balance of the Sahel

Journal Article · · Journal of Geophysical Research. D. (Atmospheres), 114:Art. No. D00E05

Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux depends upon a positive feedback, where forcing changes mixing within the boundary layer and amplifies the sensible heating anomaly. How the surface responds to radiative forcing is fundamental to the climate response to dust and carbonaceous aerosols.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
953364
Report Number(s):
PNNL-SA-64087; KP1701000; TRN: US200915%%191
Journal Information:
Journal of Geophysical Research. D. (Atmospheres), 114:Art. No. D00E05, Vol. 114
Country of Publication:
United States
Language:
English