skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of Iron-Chromium-Niobium-Titanium Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications

Journal Article · · Journal of Power Sources, 183(2):660-667

As part of an effort to develop cost-effective ferritic stainless steel-based interconnects for solid oxide fuel cell (SOFC) stacks, AL 441 HPTM was studied in terms of its metallurgical characteristics, oxidation behavior, and electrical performance. Minor alloying elements (Nb and Ti) captured interstitials such as C by forming carbides, stabilizing the ferritic structure and mitigating the risks of sensitization and inter-granular corrosion. Laves phases rich in Nb and Si precipitated along grain boundaries during high temperature exposure, improving the steel’s high temperature mechanical strength. The capture of Si in the Laves phase minimized the Si activity in the steel substrate and prevented formation of an insulating silica layer at the scale/metal interface. However, the relatively high oxidation rate, and thus increasing ASR over time, necessitates the application of a conductive protection layer on the steel. In particular, Mn1.5Co1.5O4 spinel protection layers drastically improved the electrical performance of the ferritic stainless steel 441, acting as barriers to chromium outward and oxygen inward diffusion.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
947051
Report Number(s):
PNNL-SA-59722; AA2530000
Journal Information:
Journal of Power Sources, 183(2):660-667, Journal Name: Journal of Power Sources, 183(2):660-667
Country of Publication:
United States
Language:
English