skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of energy transfer from carotenoids to bacteriochlorophyll : light-harvesting by carotenoids having different extents of {pi}-electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1.

Journal Article · · J. Phys. Chem. B
DOI:https://doi.org/10.1021/jp980911j· OSTI ID:938357

Spheroidene and a series of spheroidene analogues with extents of p-electron conjugation ranging from 7 to 13 carbon-carbon double bonds were incorporated into the B850 light-harvesting complex of Rhodobacter sphaeroides R-26.1. The structures and spectroscopic properties of the carotenoids and the dynamics of energy transfer from the carotenoid to bacteriochlorophyll (BChl) in the B850 complex were studied by using steady-state absorption, fluorescence, fluorescence excitation, resonance Raman, and time-resolved absorption spectroscopy. The spheroidene analogues used in this study were 5',6'-dihydro-7',8'-didehydrospheroidene, 7',8'-didehydrospheroidene, and 1',2'-dihydro-3',4',7',8'-tetradehydrospheroidene. These data, taken together with results from 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene, and spheroidene already published (Frank, H. A.; Farhoosh, R.; Aldema, M. L.; DeCoster, B.; Christensen, R. L.; Gebhard, R.; Lugtenburg, J. Photochem. Photobiol. 1993, 57, 49. Farhoosh, R.; Chynwat, V.; Gebhard, R.; Lugtenburg, J.; Frank, H. A. Photosynth. Res. 1994, 42, 157), provide a systematic series of molecules for understanding the molecular features that determine the mechanism of energy transfer from carotenoids to BChl in photosynthetic bacterial light-harvesting complexes. The data support the hypothesis that only carotenoids having 10 or less carbon-carbon double bonds transfer energy via their 21Ag (S1) states to BChl to any significant degree. Energy transfer via the 11Bu (S2) state of the carotenoid becomes more important than the S1 route as the number of conjugated carbon-carbon double bonds increases. The results also suggest that the S2 state associated with the Qx transition of the B850 BChl is the most likely acceptor state for energy transfer originating from both the 2{sup 1}A{sub g} (S{sub 1}) and 1{sup 1}B{sub u} (S{sub 2}) states of all carotenoids.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
ER
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
938357
Report Number(s):
ANL/CHM/JA-29681; JPCBFK; TRN: US200908%%209
Journal Information:
J. Phys. Chem. B, Vol. 102, Issue 42 ; Oct. 15, 1998; ISSN 1089-5647
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway
Journal Article · Fri Jun 10 00:00:00 EDT 2016 · Journal of Physical Chemistry. B · OSTI ID:938357

Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids
Journal Article · Thu May 11 00:00:00 EDT 2000 · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical · OSTI ID:938357

Carotenoid-to-Bacteriochlorophyll Energy Transfer in the LH1–RC Core Complex of a Bacteriochlorophyll b Containing Purple Photosynthetic Bacterium Blastochloris viridis
Journal Article · Tue May 24 00:00:00 EDT 2016 · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry · OSTI ID:938357