skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Optical Absorption Induced by Dense Nanocavities Inside Titania Nanorods

Journal Article · · Advanced Materials

Titania, a wide band gap semiconductor, can generate powerful oxidants and reductants by absorbing photon energies. Titania has been extensively used in photoelectrochemical systems, such as dye-sensitized titania, a wide band gap semiconductor, can generate powerful oxidants and reductants by absorbing photon energies. To improve the photoreactivity of titania, several approaches, including doping and metal loading have been proposed. Nanocavities are isolated entities inside a solid and hence are very different from nanoporous, whose pores (often amorphous and irregular) connect together and open to the surface. Dense polyhedral nanocavities inside single-crystalline anatase titania nanorods were successfully synthesized by simply heating titanate nanorods. The size of the nanocavities is typically about 10 nm. The surfaces of the nanocavity polyhedron are determined to be the crystallographic low-index planes of the titania crystal. We found that these dense nanocavities significantly enhance the optical absorption coefficient of titania in the near-ultraviolet region, thereby providing a new approach to increasing the photoreactivity of the titania nanorods in the applications related to absorbing photons.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
929978
Report Number(s):
BNL-80585-2008-JA; TRN: US200822%%1136
Journal Information:
Advanced Materials, Vol. 19, Issue 18
Country of Publication:
United States
Language:
English