skip to main content

Title: Status of Wind-Diesel Applications in Arctic Climates: Preprint

The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial,more » specifically in arctic climates and on islands that rely on diesel-only power generation.« less
Authors:
;
Publication Date:
OSTI Identifier:
920935
Report Number(s):
NREL/CP-500-42401
TRN: US200805%%238
DOE Contract Number:
AC36-99-GO10337
Resource Type:
Conference
Resource Relation:
Conference: Presented at The Arctic Energy Summit Technology Conference, 15-18 October 2007, Anchorage, Alaska
Research Org:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; AVAILABILITY; CLIMATES; COMMUNITIES; DIESEL ENGINES; DIESEL FUELS; MARKET; POWER GENERATION; POWER PLANTS; POWER SYSTEMS; REGULATIONS; RETROFITTING; SECURITY; STORAGE; VIABILITY; WASTE HEAT WIND ENERGY; WIND-DIESEL SYSTEM; HYBRID SYSTEM; ENERGY; ARCTIC; ALASKA; WALES; KOTZEBUE; Wind Energy