skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of pore size on the adsorption of hydrogen in slit pores of constant width and varying height

Conference ·
OSTI ID:916936

The effects of pore size on the hydrogen storage properties of a series of pillared layered solids were investigated at 77 K and 87 K up to a pressure of 1 atm. The isotherms were fit to the Langmuir-Freundlich equation and extrapolated to determine saturation values. The materials studied are based on the M(L)[M'(CN)4] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'bipyridine (bpy) or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd or Pt. The compounds all possess slit like pores with constant inplane dimensions and pore heights that vary as a function of (L). The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to the bulk liquid. The adsorbed hydrogen density drops by a factor of two as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series, and weakly correlate with pore size.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
USDOE - Office of Fossil Energy (FE)
DOE Contract Number:
None cited
OSTI ID:
916936
Report Number(s):
DOE/NETL-IR-2007-188; TRN: US200816%%200
Resource Relation:
Conference: 234th American Chemical Society (ACS) National Meeting, Boston, MA, Aug. 19-23, 2007
Country of Publication:
United States
Language:
English