skip to main content

Title: SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-termmore » storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other concerns as well. There is less clarity regarding the legal and regulatory issues around site characterization for large CCS injection volumes. In particular, it is not clear what would constitute due diligence for a potential selection and operation of a commercial site. This is complicated by a lack of clarity around permitting issues and subsurface ownership. However, there are many natural, industrial, regulatory, and legal analogs for these questions. However, solutions will need to evolve within the set of laws and practices current to the State. The chief conclusion of this chapter is that there is enough knowledge today to characterize a site for geological carbon sequestration safely and effective permitting and operation. From this conclusion and others flow a set of recommendations that represent potential actions for decision makers.« less
Authors:
Publication Date:
OSTI Identifier:
915602
Report Number(s):
UCRL-TR-234408
TRN: US200816%%92
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; CALIFORNIA; CAPACITY; CARBON; CARBON SEQUESTRATION; GREENHOUSES; NATURAL GAS FIELDS; OWNERSHIP; POINT SOURCES; RECOMMENDATIONS; SITE CHARACTERIZATION; SITE SELECTION; STORAGE; TARGETS; VIABILITY