skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

Technical Report ·
DOI:https://doi.org/10.2172/902081· OSTI ID:902081

The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such systems. The major findings generated by this research effort in its first two years have been summarized in the 2003 and 2004 Annual Progress Reports of DOE's Freedom Car and Vehicle Technologies Program. Consistent interactions with producers of heavy trailers, such as Great Dane and Wabash, as well as with their users, such as Old Dominion Freight Lines, have continued during this period to ensure that the research conducted at WVU will yield practical results that will benefit the industry in the near future. Furthermore, Dr. Gergis William and Mr. Thomas Evans participated in the 2005 Technology and Maintenance Council (TMC) annual meeting held in Tampa, Florida, in February 2005. This event offered the WVU researchers an effective opportunity to explore various technical needs and concerns of the industry, both from the performance and maintenance viewpoints, as well as to assess realistically potential benefits and barriers associated with practical implementation of lightweight materials and design technologies in heavy vehicle structures.

Research Organization:
West Virginia University Research C
Sponsoring Organization:
USDOE
DOE Contract Number:
FC26-05NT42476
OSTI ID:
902081
Country of Publication:
United States
Language:
English