skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cardiac imaging using a four-segment slant-hole collimator

Journal Article · · IEEE Transactions on Nuclear Science
OSTI ID:901811

The main objective of this paper is to evaluate four segmentslant-hole (FSSH) SPECT for cardiac imaging. FSSH is a slant-holecollimator that is divided into four segments and arranged such that thephotons from the volume of interest (VOI)are projected four times forevery location of the detector. These multiple projections help toimprove the sensitivity of the photons from the VOI by a factor4(cos(sigma))3, where is the slant angle of the collimator. Anotheradvantage of FSSH SPECT is a reduction in the total scan time, since agantry rotation of pi-2sigma is sufficient to satisfy Orlov's condition.That means, for a slant angle of 30 degrees, a gantry rotation of 120degrees is sufficient to satisfy Orlov's condition and obtain a completedataset. In this paper, we evaluate and compare the reconstructed imagesobtained using an FSSH collimator, for a gantry rotation of 180 degreesand 120 degrees, with those obtained from a parallel-hole (PH) SPECTsystem using a 180 degree acquisition. The reconstructed images from thethree imaging geometries were compared in terms of average image noise,contrast, and percentage error, for seven different clinical count levelsand for multiple noise realizations in each case. The increase insensitivity of the FSSH system was found to translate into a proportionaldecrease in statistical noise for voxels in the VOI of the reconstructedimages. Finally, a physical phantom study was performed using a prototypeFSSH collimator. Our findings show that FSSH collimators have thepotential of being the collimator of choice for cardiac SPECT imaging.Though we explore the potential of FSSH collimators for cardiac imagingin this paper, the concept can be extended for imaging other organs suchas the breasts, kidney, and brain.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director, Office of Science. Office of Biological andEnvironmental Research. Medical Sciences Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
901811
Report Number(s):
LBNL-58925; IETNAE; R&D Project: 864K2B; TRN: US0702667
Journal Information:
IEEE Transactions on Nuclear Science, Vol. 53, Issue 4; Related Information: Journal Publication Date: October,2006; ISSN 0018-9499
Country of Publication:
United States
Language:
English