skip to main content

Title: Advanced Photon Source Activity Report 2002 at Argonne National Laboratory, Argonne, IL, December 2003 - contribution title:"Microdiffraction Study of Epitaxial Growth and Lattice Tilts in Oxide Films on Polycrystalline Metal Substrates"

Texture, the preference for a particular crystallographic orientation in polycrystalline materials, plays an important role in controlling such diverse materials properties as corrosion resistance, recording density in magnetic media and electrical transport in superconductors [1]. Without texture, polycrystalline oxide superconductors contain many high-angle, weak-linked grain boundaries which reduce critical current densities by several orders of magnitude [2]. One approach for inducing texture in oxide superconductors has been the epitaxial growth of films on rolling-assisted biaxially-textured substrates (RABiTS) [3]. In this approach, rolled Ni foils are recrystallized under conditions that lead to a high degree of biaxial {l_brace}001{r_brace}<100> cube texture. Subsequent deposition of epitaxial oxide buffer layers (typically CeO{sub 2} and YSZ as chemical barriers) and superconducting YBCO preserves the lattice alignment, eliminating high-angle boundaries and enabling high critical current densities, J{sub c} > 10{sup 6}/cm{sup 2}. Conventional x-ray diffraction using {omega}- and {phi}-scans typically shows macroscopic biaxial texture to within {approx}5{sup o}-10{sup o} FWHM for all layers, but does not describe the local microstructural features that control the materials properties. Understanding and controlling the local texture and microstructural evolution of processes associated with heteroepitaxial growth, differential thermal contraction and cracking remain significant challenges in this complex system [4], as wellmore » as in many other technologically important thin-film applications.« less
Authors:
Publication Date:
OSTI Identifier:
885661
Report Number(s):
ORNL/TM-2004/51
TRN: US0604074
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Technical Report
Research Org:
ORNL
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 43 PARTICLE ACCELERATORS; ADVANCED PHOTON SOURCE; ALIGNMENT; BUFFERS; CONTRACTION; CORROSION RESISTANCE; CRITICAL CURRENT; DEPOSITION; GRAIN BOUNDARIES; ORIENTATION; OXIDES; SUBSTRATES; SUPERCONDUCTORS; TEXTURE; TRANSPORT; X-RAY DIFFRACTION