skip to main content

Title: Heat Capacity Analysis Report

The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 Cmore » to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore water. For temperatures in the trans-boiling regime (95 C to 114 C), the additional energy required to vaporize the pore water is accounted for in the rock-mass heat capacity. The rock-grain heat capacities are intended to be used in models and analyses that explicitly account for the thermodynamic effects of the water within the rock porosity. The rock-mass heat capacities are intended to be used in models and analyses that do not explicitly account for these thermodynamic effects, particularly boiling. The term specific heat is often used synonymously with heat capacity; however, the latter term is used throughout this document.« less
Authors:
Publication Date:
OSTI Identifier:
838658
Report Number(s):
ANL-NBS-GS-000013, REV 01
DOC.20041101.0003, DC42164; TRN: US0502878
DOE Contract Number:
AC28-01RW12101
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: 1 Nov 2004
Research Org:
Yucca Mountain Project, Las Vegas, Nevada (US)
Sponsoring Org:
US Department of Energy (US)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ABUNDANCE; BOILING; DESIGN; LICENSE APPLICATIONS; NATURAL CONVECTION; POROSITY; SIMULATION; SPECIFIC HEAT; STRATIGRAPHY; THERMODYNAMICS; TRANSPORT; VENTILATION; WASTES; WATER; YUCCA MOUNTAIN