skip to main content

SciTech ConnectSciTech Connect

Title: THE APPLICATION OF ELECTROCHEMICAL NOISE BASED CORROSION MONITORING TO NUCLEAR WASTE TANK VAPOR SPACE ENVIRONMENTS AT THE HANFORD SITE

Vapor space corrosion data collected by electrochemical noise (EN) based corrosion probes installed in double shell tanks (DSTs) at the Department of Energy's Hanford Site in Richland, Washington have historically been characterized by surprisingly high levels in current. In late 2003, a program was established to assess the significance of archived Hanford DST vapor space EN data. This program showed that the high vapor space current levels are likely the result of crevice corrosion on the vapor space electrodes. The design of DST vapor space electrodes provides tight metal-to-metal and gaskeito-metal interfaces necessary for this type of localized corrosion to occur. In-tank activities (splashing, etc.), or more likely condensation of water vapor in the vapor space, provide the necessary moisture. Because crevice corrosion appears to be active on the vapor space EN electronics, data collected from these electrodes are not likely to be applicable to the large flat metal surfaces that make up the bulk of the DST domes and upper walls. The data do, however, indicate that conditions in the DST vapor spaces are conducive to accelerated crevice corrosion at creviced areas in the tank vapor space (overlapping joints, riser interfaces, equipment penetrations, etc.) under high humidity conditions.
Authors:
Publication Date:
OSTI Identifier:
838523
Report Number(s):
CH2M-23605-FP, Rev.0
TRN: US0501471
DOE Contract Number:
AC27-99RL14047
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 4 Apr 2005
Research Org:
ARES (US)
Sponsoring Org:
ENVIRONMENTAL MANAGEMENT (US)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; CORROSION; CREVICE CORROSION; DESIGN; ELECTRODES; HUMIDITY; MOISTURE; MONITORING; PROBES; RADIOACTIVE WASTES; TANKS; WATER VAPOR