skip to main content

Title: INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.
Authors:
; ;
Publication Date:
OSTI Identifier:
783274
Report Number(s):
LA-UR-01-3148
TRN: AH200131%%399
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Jun 2001
Research Org:
Los Alamos National Lab., NM (US)
Sponsoring Org:
US Department of Energy (US)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANISOTROPY; EUTECTOIDS; FRACTURES; MICROSTRUCTURE; NUCLEATION; PLASTICS; SPALLATION; STEELS; TEXTURE