skip to main content

SciTech ConnectSciTech Connect

Title: AFREET: HUMAN-INSPIRED SPATIO-SPECTRAL FEATURE CONSTRUCTION FOR IMAGE CLASSIFICATION WITH SUPPORT VECTOR MACHINES

The authors examine the task of pixel-by-pixel classification of the multispectral and grayscale images typically found in remote-sensing and medical applications. Simple machine learning techniques have long been applied to remote-sensed image classification, but almost always using purely spectral information about each pixel. Humans can often outperform these systems, and make extensive use of spatial context to make classification decisions. They present AFREET: an SVM-based learning system which attempts to automatically construct and refine spatio-spectral features in a somewhat human-inspired fashion. Comparisons with traditionally used machine learning techniques show that AFREET achieves significantly higher performance. The use of spatial context is particularly useful for medical imagery, where multispectral images are still rare.
Authors:
;
Publication Date:
OSTI Identifier:
774619
Report Number(s):
LA-UR-01-891
TRN: AH200121%%88
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Feb 2001
Research Org:
Los Alamos National Lab., NM (US)
Sponsoring Org:
US Department of Energy (US)
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; CLASSIFICATION; CONSTRUCTION; LEARNING; PERFORMANCE; REMOTE SENSING; VECTORS; IMAGES