skip to main content

SciTech ConnectSciTech Connect

Title: MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.
Authors:
;
Publication Date:
OSTI Identifier:
774572
Report Number(s):
LA-UR-01-847
TRN: AH200121%%87
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Feb 2001
Research Org:
Los Alamos National Lab., NM (US)
Sponsoring Org:
US Department of Energy (US)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRACK PROPAGATION; DYNAMIC LOADS; FIBERS; OPENINGS; SHEAR; WAVE PROPAGATION