skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vanadia/titania catalysts for selective catalytic reduction of nitric oxide by ammonia. II. Studies of active sites and formulation of catalytic cycles

Journal Article · · Journal of Catalysis
; ;  [1]
  1. Haldor Topsoe Research Labs., Lyngby (Denmark)

The reaction mechanism and catalytic cycle for the selective catalytic reduction of nitric oxide by ammonia over vanadia/titania catalysts has been elucidated by in situ on-line FTIR studies under steady-state conditions. Under all reaction conditions, and large concentration of ammonia is absorbed on both Lewis and Bronsted acid sites, whereas no significant amounts of adsorbed NO are adsorbed. The catalytic activity is found to be related to the ammonia adsorbed on the Bronsted acid site associated with V{sup 5+}-OH. Surface V=O groups are involved in activation of the adsorbed ammonia and are also found to play an important role in the catalytic cycle. The activation involves a transfer or a partial transfer of a hydrogen and reduced V-OH groups are produced. The 5{sup +}=O surface species are regenerated by oxidation. The results, therefore, show that the catalytic cycle consists of both acid-base and redox reactions. The ammonia adsorption is observed to be a fast equilibrated step under all the conditions studied but the other catalytically significant steps may shift depending on the reaction conditions. At high O{sub 2} partial pressures, the rate is mainly determined by the concentration of Bronsted acid sites and the NO partial pressure, whereas at low O{sub 2} partial pressures, surface reoxidation is slow and the rate becomes dependent on the concentration of V{sup 5+}=O groups. 40 refs., 10 figs., 1 tab.

OSTI ID:
75810
Journal Information:
Journal of Catalysis, Vol. 151, Issue 1; Other Information: PBD: Jan 1995
Country of Publication:
United States
Language:
English