skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Drift wave coherent vortex structures in inhomogeneous plasmas

Miscellaneous ·
OSTI ID:7155719

Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength ([approximately][rho][sub s]) region, while in the longer wavelength ([approximately]([rho][sub s](r)[sub n])[sup [1/2]]) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a [open quote]flapping[close quote] tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations.

Research Organization:
Texas Univ., Austin, TX (United States)
OSTI ID:
7155719
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English