skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

Thesis/Dissertation ·
OSTI ID:7011012

Renewed interest in space nuclear applications has motivated the study of a specialized reactor kinetics model. Consideration of a kinetics model favorable for study of the feasibility of automatic control of these devices is warranted. The need to bridge this gap between reactor kinetics and automatic control in conjunction with the control drum design characteristic of next generation paper space reactors inspired the development of a new Reflected Kinetics (RK) model. An extension of the conventional point-kinetics (PK) model was done in order to explicitly correlate reactivity and the reflector/absorber control drums characteristic of space nuclear reactor designs. Open-loop computations and numerical comparison to analytic PK equations indicated that the RK model is a functional alternative to equivalent bare point kinetics in the analysis of moderate transients. Variations in the RK reflector-to-core transfer probabilities and coolant flow rate do indeed drive the transient differently than the lumped insertion of equivalent reactivity amounts in the core. These computations illustrated the potential importance of the utilization of variable coolant flow rate to aid control in space reactor systems limited by minimal drum reactivity worth. Additionally the Doppler reactivity shutdown mechanism was concluded to be the primarily reliable means of safety shutdown in such systems. The structure of the RK equations proved to be advantageous for integration of automatic control.

Research Organization:
Texas A and M Univ., College Station (USA)
OSTI ID:
7011012
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English