skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isotope effect studies of the chemical mechanism of pig heart NADP isocitrate dehydrogenase

Journal Article · · Biochemistry; (United States)
DOI:https://doi.org/10.1021/bi00408a040· OSTI ID:6999636

The catalytic mechanism of porcine heart NADP isocitrate dehydrogenase has been investigated by use of the variation of deuterium and /sup 13/C kinetic isotope effects with pH. The observed /sup 13/C isotope effect on VK for isocitrate increases from 1.0038 at neutral pH to a limiting value of 1.040 at low pH. The limiting /sup 13/C isotope effect with deuteriated isocitrate at low pH is 1.016. This decrease in /sup 13/(VK/sub Ic/) upon deuteriation indicates a stepwise mechanism for the oxidation and decarboxylation of isocitrate. This predicts a deuterium isotope effect on VK of 2.9, but /sup D/(VK) at low pH only increases to a maximum of 1.08. The pK seen in the /sup 13/(VK/sub Ic/) pH profile for isocitrate if 4.5. This pK is displaced 1.2 pH units from the true pK of the acidbase functionality of 5.7 seen in the pK/sub i/ profile for oxalylglycine. From this displacement, catalysis is estimated to be 16 times faster than substrate dissociation. By use of the pH-dependent partitioning ratio of the reaction intermediate oxalosuccinate between decarboxylation to 2-ketoglutarate and reduction to isocitrate, the forward commitment to catalysis for decarboxylation was determined to be 7.3 at pH 5.4 and 3.2 at pH 5.0. This gives in intrinsic /sup 13/C isotope effect for decarboxylation of 1.050. The product of oxidative decarboxylation of 3-hydroxyisocitrate by NADP isocitrate dehydrogenase is 2-hydroxy-3-ketoglutarate. This results from enzymatic protonation of the cis-enediol intermediate at C/sub 2/ rather than C/sub 3/ (as seen with isocitrate and 3-fluoroisocitrate). 2-Hydroxy-3-ketoglutarate further decarboxylates in solution to 2-hydroxy-3-ketobutyrate, which further decarboxylates to acetol. This makes 3-hydroxyisocitrate unsuitable for /sup 13/C isotope effect studies.

Research Organization:
Univ. of Wisconsin, Madison (USA)
OSTI ID:
6999636
Journal Information:
Biochemistry; (United States), Vol. 27:8
Country of Publication:
United States
Language:
English