skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of cyclic GMP metabolism in toad photoreceptors. Definition of the metabolic events subserving photoexcited and attenuated states

Journal Article · · J. Biol. Chem.; (United States)
OSTI ID:6974270

Photoreceptor metabolism of cGMP and its regulation were characterized in isolated toad retinas by determining the intensity and time dependence of light-induced changes in the following metabolic parameters: cGMP hydrolytic flux determined by the rate of 18O incorporation from 18O-water into retinal guanine nucleotide alpha-phosphoryls; changes in the total concentrations of the guanine nucleotide metabolic intermediates; and changes in the concentration of metabolic GDP calculated from the fraction of the alpha-GDP that undergoes labeling with 18O. With narrow band 500 nm light that preferentially stimulates red rod photoreceptors, a range of intensities covering approximately 5 log units produced increases of over 10-fold in cGMP metabolic flux. However, the characteristics of the cGMP metabolic response over the first 2.5 log units of intensity are readily distinguishable from those at higher intensities which exhibit progressive attenuation by an intensity- and time-dependent process. Over the range of low intensities the metabolic response is characterized by 1) increases in cGMP hydrolytic flux of up to 8-fold as a logarithmic function of intensity of photic stimulation that are sustained for at least 200 s; 2) small increases or no change in the concentration of total cGMP; 3) large increases of up to 10-fold in the concentration of metabolically active GDP as a linear function of intensity with no significant change in the tissue concentrations of total GDP or GTP; and 4) amplification of the photosignal by the metabolism of approximately 10,000 molecules of cGMP per photoisomerization with the major site of amplification at the level of the interaction of bleached rhodopsin with G-protein.

Research Organization:
Univ. of Minnesota Medical School, Minneapolis (USA)
OSTI ID:
6974270
Journal Information:
J. Biol. Chem.; (United States), Vol. 263:18
Country of Publication:
United States
Language:
English