skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fabrication and chemical composition of rf magnetron sputtered Tl-Ca-Ba-Cu-O high T sub c superconducting thin films

Journal Article · · Journal of Applied Physics; (USA)
DOI:https://doi.org/10.1063/1.346711· OSTI ID:6669266
; ; ;  [1]
  1. Electronic Devices and Materials Research Laboratory, Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0030 (USA)

High-temperature superconducing Tl-Ca-Ba-Cu-O (TlCaBaCuO) thin films were fabricated by rf magnetron sputtering on strontium titanate (SrTiO{sub 3}) substrates. Thin films of 0.5--0.7-{mu}m thickness were deposited by pure argon sputtering from a single composite powder target of Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub {ital x}} at an rf power of 250 W and a pressure of 5 mTorr. As-deposited thin films were sintered and annealed in a thallium-rich ambient to obtain superconductivity with a zero resistance temperature ({ital T}{sub {ital c}0}) at 107 K. X-ray diffraction results showed highly {ital c}-axis oriented films with Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub {ital x}} (2223) and Tl{sub 2}Ca{sub 1}Ba{sub 2}Cu{sub 2}O{sub {ital x}} (2122) phases present. Auger electron spectroscopy survey and depth profiles were performed to determine the compositional uniformity and impurity contents of the thin films. X ray photoelectron spectroscopy high-resolution spectra were obtained at the surface, in the bulk, and near the interface with the substrate. Our XPS results support two possible mechanisms for the creation of holes in the TlCaBaCuO compound: (1) partial substitution of Ca{sup 2+} for Tl{sup 3+} and (2) charge transfer from Tl{sup 3+} to the CuO layers resulting in a valence of Tl between +3 and +1 states and the creation of holes in the CuO layers. In addition, a wet chemical etching process was developed for patterning the as-deposited TlCaBaCuO thin films. A 125-{mu}m-wide line was formed using standard photolithography and wet chemical etching which, after heat treatments, showed superconductivity with a {ital T}{sub {ital c}0} of 80 K.

OSTI ID:
6669266
Journal Information:
Journal of Applied Physics; (USA), Vol. 68:3; ISSN 0021-8979
Country of Publication:
United States
Language:
English