skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth and characterization of GaAs, AlGaAs and their heterostructures by organometallic vapor phase epitaxy

Thesis/Dissertation ·
OSTI ID:6629586

Organometallic Vapor Phase Epitaxy (OMVPE) is a cold wall vapor desposition technique using organometallic and/or hydride sources for the fabrication of a variety of epitaxial compound semiconductor alloys on suitable substrates. The use of the OMVPE process to produce high quality GaAs, AlGaAs, and their heterostructures on GaAs substrates using trimethygalium (TMG), trimethylalumium (TMA), and arsine is described. For GaAs epitaxial films, the unintentional residual donor sand acceptors have been identified using far-infrared photo-ionization data, and low temperature photoluminescence, respectively, and their concentrations have been evaluated using Hall data. For the growth of AlGaAs films, it was observed that poor quality films were obtained due to oxygen contamination of the layer during growth. A series of graded bandgap heterostructures and abrupt quantum well heterostructures were grown over a variety of growth conditions. Composition gradings were controlled over a full range of alloy compositions on distances as small as 500 - 1000 A, and a 40 A quantum well heterostructure was obtained at low growth temperatures (550/sup 0/C). Finally, results are presented on a few devices which incorporate metallurgical junctions and heterojunctions with the GaAs/AlGaAs system. These devices include a microwave vertical FET structure, graded bandgap solar cells, and light emitting diodes.

OSTI ID:
6629586
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English