skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Net carbon dioxide exchange rates and predicted growth patterns in Alstroemeria Jacqueline' at varying irradiances, carbon dioxide concentrations, and air temperatures

Journal Article · · Journal of the American Society for Horticultural Science; (United States)
OSTI ID:6591895
; ;  [1]
  1. Univ. of Guelph, Ontario (Canada). Dept. of Horticultural Science

The influence of irradiance, CO[sub 2] concentration, and air temperature on leaf and whole-plant net C exchange rate (NCER) of Alstroemeria Jacqueline' was studied. At ambient CO[sub 2], leaf net photosynthesis was maximum at irradiances above 600 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] photosynthetically active radiation (PAR), while whole-plant NCER required 1,200 [mu]mol[center dot]m[sup [minus]2][center dot]s[sup [minus]1] PAR to be saturated. Leaf and whole-plant NCERs were doubled under CO[sub 2] enrichment of 1,500 to 2,000 [mu]l CO[sub 2]/liter. Leaf and whole-plant NCERs declined as temperature increased from 20 to 35 C. Whereas the optimum temperature range for leaf net photosynthesis was 17 to 23 C, whole-plant NCER, even at high light and high CO[sub 2], declined above 12 C. Dark respiration of leaves and whole plants increased with a Q[sub 10] of [approx] 2 at 15 to 35 C. In an analysis of day effects, irradiance, CO[sub 2] concentration, and temperature contributed 58%, 23%, and 14%, respectively, to the total variation in NCER explained by a second-order polynomial model (R[sup 2] = 0.85). Interactions among the factors accounted for 4% of the variation in day C assimilation. The potential whole-plant growth rates during varying greenhouse day and night temperature regimes were predicted for short- and long-day scenarios. The data are discussed with the view of designing experiments to test the importance of C gain in supporting flowering and high yield during routine harvest of Alstroemeria plants under commercial greenhouse conditions.

OSTI ID:
6591895
Journal Information:
Journal of the American Society for Horticultural Science; (United States), Vol. 119:6; ISSN 0003-1062
Country of Publication:
United States
Language:
English