skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Eustatic and structural control of submarine-fan sedimentation, Conception fan, Santa Barbara basin, California

Conference · · Am. Assoc. Pet. Geol., Bull.; (United States)
OSTI ID:6527790

Eustatic sea level lows provide an opportunity for submarine-fan development; topography and structure, however, can control depositional-sequence geometry. Analysis of high-resolution seismic data provides a basis to evaluate to the evolution and geometry of the Pleistocene-Holocene Conception fan. The fan formed in the restricted, tectonically active Santo Barbara basin. It consists of 4 vertically stacked depositional sequences, each bounded by nondepositional unconformities. The unconformities are defined by seismic-sequence boundaries and were formed during sea-level falls that are related to Pleistocene glacioeustatic changes. Each depositional sequence consists of lowstand, sandrich facies (fan channel, levee, and lobe) topped by highstand, mud-rich facies. The geometry of the depositional sequences tends to be rectilinear, not arcuate, because lateral progradation is restricted by topographically high structures. The modern fan surface and the Holocene depositional sequence provide a good analog for the older, underlying depositional sequences. The fan surface is characterized by 4 main channels, 2 of which head into submarine canyons incised into the shelf. Submarine canyons that fed the other 2 channels are now filled and have no topographic expression. In addition, numerous partially buried channel segments occur in the interchannel areas. The Holocene depositional sequence consists of lenticular and sheet-drape deposits interpreted to be channel, levee, and lobe facies. The facies geometry suggests that Mutti's topographic compensation, channel migration, and avulsion were typical processes on Conception fan.

Research Organization:
Exxon Production Research Co., Houston, TX
OSTI ID:
6527790
Report Number(s):
CONF-8405216-
Journal Information:
Am. Assoc. Pet. Geol., Bull.; (United States), Vol. 68:4; Conference: AAPG annual convention, San Antonio, TX, USA, 20 May 1984
Country of Publication:
United States
Language:
English