skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of pro-adrenocorticotropin-endorphin synthesis and secretion in cultured neonatal rat anterior pituitary

Journal Article · · Molecular Endocrinology; (USA)
DOI:https://doi.org/10.1210/mend-1-8-548· OSTI ID:6276489
;  [1]
  1. Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA)

Previous work demonstrated that newborn rat anterior pituitary corticotropes display processing patterns for pro-ACTH/endorphin that are different from the adult. The synthesis and release of beta-endorphin-related peptides was examined in dispersed cell and explant cultures of newborn anterior pituitary to investigate corticotrope development further. The temporal pattern of pro-ACTH/endorphin processing differed significantly from adult rat melanotropes and AtT-20 cells. While pro-ACTH/endorphin processing begins within 30 min of synthesis in adult melanotropes and AtT-20 cells, pulse-labeling of newborn corticotropes in culture indicated that pro-ACTH/endorphin remained uncleaved for at least 90 min after synthesis. With further incubation, there was a decrease in radioactivity associated with the precursor and an equivalent rise in the radioactivity associated with beta-endorphin and beta-lipotropin. However, unprocessed precursor still remained in the cultured newborn anterior pituitary cells after a 25-h chase. Although intact pro-ACTH/endorphin from newborn corticotropes was very long-lived, the precursor did undergo oligosaccharide maturation and became endoglycosidase H resistant within 1 h after synthesis. Similar to the adult, pro-ACTH/endorphin synthesis was doubled in cultures of newborn anterior pituitary chronically treated with 10 nM CRF resulting in a 3- to 4-fold stimulation of secretion over the basal rate. However, unlike the AtT-20 cell or adult rat corticotrope, the proteolytic processing of pro-ACTH/endorphin in the newborn corticotrope was altered by chronic secretagogue treatment; less pro-ACTH/endorphin was converted to beta-endorphin in secretagogue-treated corticotropes than in controls. Thus processing of pro-ACTH/endorphin in the corticotrope is not mature by birth and can be regulated by chronic CRF treatment.

OSTI ID:
6276489
Journal Information:
Molecular Endocrinology; (USA), Vol. 1:8; ISSN 0888-8809
Country of Publication:
United States
Language:
English