skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fine structure of the FMR-1 locus

Journal Article · · American Journal of Medical Genetics
OSTI ID:62063
; ; ;  [1]
  1. Baylor College of Medicine, Houston, TX (United States)

The fragile X syndrome is due to a CGG triplet expansion in the first exon of FMR-1, resulting in hypermethylation and extinction of gene expression. To further understanding of the gene`s involvement in the syndrome, we have determined the physical structure of this locus. A high resolution restriction map of cosmids from the region has been prepared encompassing approximately 50 kb. Using exon-exon PCR and restriction analysis, the FMR-1 gene has been determined to consist of 17 exons spanning 38 kb of Xq27.3. Each intron-exon boundary has been sequenced. In general, the splice donors and acceptors located in the 5{prime} portion of the gene demonstrate greater adherence to consensus than those in the 3{prime} end, providing a possible explanation for the finding of alternative splicing in FMR-1. Sequence analysis of the region immediately flanking the CGG triplet repeat demonstrated both tetranucleotide and dinucleotide repeats. Additional sequence is being obtained from the overlapping cosmids spanning the gene, and extending 20 kb proximal and approximately 30 kb distal as part of a larger project to determine sequence on the megabase scale in the Xq27.3-q28 region. These sequences are being characterized from normal and affected individuals to assess polymorphisms and the role (if any) of peculiar sequences in the generation of fragile X CGG instability. The elucidation of the structure and composition of the FMR-1 gene as well as its flanking region will enhance detection of other mutations possible in fragile X phenocopy individuals.

OSTI ID:
62063
Journal Information:
American Journal of Medical Genetics, Vol. 51, Issue 4; Other Information: PBD: 15 Jul 1994
Country of Publication:
United States
Language:
English