skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber

Abstract

The interstitial glass in cognate nodules from Mauna Loa, has by chemical diffusion or convective fluid transport, remained in equilibrium with the overlying magma. The glass bearing nodules were collected from Damona Cone on the southwest rift zone of Mauna Loas. The nodules have approximately 15% olivine, 40% orthopyroxene plus clinopyroxene (3-20%), and 85% plagioclase plus vescicular glass (2-25%). Olivine norites have anhedral olivine mantled with anhedral orthopyroxene, subhedral to euhedral pyroxene, anhedral plagioclase, and 20 to 25% glass. Olivine gabbros have anhedral olivine, subequant, anhedral to subhedral pyroxene and plagioclase and less than 10% glass. The bulk composition of greater than 15%, MgO, with the textures, indicate the nodules are an accumulative origin. Thus these nodules are partially solidified pieces of crystal/liquid accumulative mush. The compositions of the olivines are Fa 18 to 25 mole percent, of the plagioclases are An 70 to 80 mole percent. The composition of the orthopyroxene is En76 Fs19 Wo5, and of the clinopyroxene is En50 Fall Wo30. The composition of the interstitial glasses is: SiO2 52.54, TiO2 2.04, Al2O3 14.39, FeO 11.47, MgO 7.15, CaO 10.28, Na20 1.42, K2O 0.39, P2O5 0.21. The low Na2O is from two nodules that may have experiencedmore » high temperature alteration. The uniformity of the glass composition, in contrast to its large variation in the mode, suggests the interstitial liquid in the mush has remained in equilibrium with some large reservoir of MgO rich liquid, such as the magma above the mush. Two possible mechanisms of cation exchange between the magma and the interstitial liquid of the mush are chemical diffusion and convective fluid transport.« less

Authors:
;
Publication Date:
Research Org.:
Univ. of Chicago, IL (USA)
OSTI Identifier:
6196147
Report Number(s):
CONF-8510489-
Journal ID: CODEN: GAAPB
Resource Type:
Conference
Journal Name:
Geol. Soc. Am., Abstr. Programs; (United States)
Additional Journal Information:
Journal Volume: 17; Conference: 98. annual meeting of the Geological Society of America, Orlando, FL, USA, 28 Oct 1985
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; GABBROS; CHEMICAL COMPOSITION; CRYSTALLOGRAPHY; MINERALOGY; HAWAII; AMORPHOUS STATE; CHEMICAL REACTION KINETICS; GEOCHEMISTRY; ION EXCHANGE; MAGMA; MAGMATISM; OLIVINE; PYROXENES; VOLCANOES; ALKALINE EARTH METAL COMPOUNDS; CHEMISTRY; FEDERAL REGION IX; IGNEOUS ROCKS; IRON COMPOUNDS; IRON SILICATES; KINETICS; MAGNESIUM COMPOUNDS; MAGNESIUM SILICATES; MINERALS; NORTH AMERICA; OXYGEN COMPOUNDS; PLUTONIC ROCKS; REACTION KINETICS; ROCKS; SILICATE MINERALS; SILICATES; SILICON COMPOUNDS; TRANSITION ELEMENT COMPOUNDS; USA; 580300* - Mineralogy, Petrology, & Rock Mechanics- (-1989); 580400 - Geochemistry- (-1989)

Citation Formats

Schwindinger, K R, and Anderson, A F. Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber. United States: N. p., 1985. Web.
Schwindinger, K R, & Anderson, A F. Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber. United States.
Schwindinger, K R, and Anderson, A F. 1985. "Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber". United States.
@article{osti_6196147,
title = {Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber},
author = {Schwindinger, K R and Anderson, A F},
abstractNote = {The interstitial glass in cognate nodules from Mauna Loa, has by chemical diffusion or convective fluid transport, remained in equilibrium with the overlying magma. The glass bearing nodules were collected from Damona Cone on the southwest rift zone of Mauna Loas. The nodules have approximately 15% olivine, 40% orthopyroxene plus clinopyroxene (3-20%), and 85% plagioclase plus vescicular glass (2-25%). Olivine norites have anhedral olivine mantled with anhedral orthopyroxene, subhedral to euhedral pyroxene, anhedral plagioclase, and 20 to 25% glass. Olivine gabbros have anhedral olivine, subequant, anhedral to subhedral pyroxene and plagioclase and less than 10% glass. The bulk composition of greater than 15%, MgO, with the textures, indicate the nodules are an accumulative origin. Thus these nodules are partially solidified pieces of crystal/liquid accumulative mush. The compositions of the olivines are Fa 18 to 25 mole percent, of the plagioclases are An 70 to 80 mole percent. The composition of the orthopyroxene is En76 Fs19 Wo5, and of the clinopyroxene is En50 Fall Wo30. The composition of the interstitial glasses is: SiO2 52.54, TiO2 2.04, Al2O3 14.39, FeO 11.47, MgO 7.15, CaO 10.28, Na20 1.42, K2O 0.39, P2O5 0.21. The low Na2O is from two nodules that may have experienced high temperature alteration. The uniformity of the glass composition, in contrast to its large variation in the mode, suggests the interstitial liquid in the mush has remained in equilibrium with some large reservoir of MgO rich liquid, such as the magma above the mush. Two possible mechanisms of cation exchange between the magma and the interstitial liquid of the mush are chemical diffusion and convective fluid transport.},
doi = {},
url = {https://www.osti.gov/biblio/6196147}, journal = {Geol. Soc. Am., Abstr. Programs; (United States)},
number = ,
volume = 17,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 1985},
month = {Tue Jan 01 00:00:00 EST 1985}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: