skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrolysis of phosphate diesters with copper(II) catalysts

Journal Article · · Inorg. Chem.; (United States)
DOI:https://doi.org/10.1021/ic00292a025· OSTI ID:6181204

Hydrolysis of phosphate diesters (4-NO/sub 2/C/sub 6/H/sub 4/O)/sub 2/PO/sub 2/Na (1) and (4-NO/sub 2/C/sub 6/H/sub 4/O)(CH/sub 3/CH/sub 2/O)PO/sub 2/Li (2) is catalyzed by Cu(bpy)/sup 2 +/ (bpy = 2,2'-bipyridine) in aqueous solution at 75/degrees/C in the pH range 5.8-8.3. Greater than 1000 turnovers and 200 turnovers per Cu(bpy)/sup 2 +/ are observed in the hydrolysis of 1 and 2, respectively. Catalytic rate enhancements of the hydrolysis of 1 and 2 by 1 x 10/sup -3/ M Cu(bpy)/sup 2 +/ at pH 6.5 over spontaneous hydrolysis under the same conditions without catalyst are 2000 and 150, respectively. The hydrolysis of copper-bound 2 proceeds 6300-fold more rapidly (pH 7.85) than hydrolysis of 2 in the absence of catalyst. Kinetics for the Cu(bpy)/sup 2 +/-catalyzed hydrolysis of 2 are examined in detail. Reaction pathways are proposed. Labeling studies in /sup 18/OH/sub 2/ show no incorporation of /sup 18/O into p-nitrophenol. A single /sup 18/O label incorporates into the (C/sub 2/H/sub 5/O)PO/sub 3//sup 2 -/ product. Several simple transition-metal complexes promote the catalytic hydrolysis of phosphate diesters 1 and 2, although none are as effective as Cu(bpy)/sup 2 +/. Second-order rate constants for Cu(bpy)/sup 2 +/-promoted hydrolysis in the series of 4-nitrophenyl phosphate esters (triester, diester (anion), monoester (dianion)) vary by only a factor of 60 in contrast to those for the reaction of these phosphate esters with anionic nucleophiles in the absence of metal catalysts, which show large differences in second-order rate constants (> 10/sup 3/) between each ester in the series. 54 references, 5 figures, 6 tables.

Research Organization:
Univ. of California at San Diego, La Jolla (USA)
OSTI ID:
6181204
Journal Information:
Inorg. Chem.; (United States), Vol. 27:19
Country of Publication:
United States
Language:
English