skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ternary titanium transition metal bismuthides Ti{sub 4}TBi{sub 2} with T = Cr, Mn, Fe, Co, and Ni

Journal Article · · Journal of Solid State Chemistry

The title compounds were prepared by reaction of the elemental components and with the exception of the isotypic chromium compound their tetragonal V{sub 4}SiSb{sub 2}-type crystal structures (I4/mcm, Z = 4) were determined and refined from single-crystal X-ray data. Ti{sub 4}CrBi{sub 2}: a = 1051.6(l), c = 506.7(1) pm; Ti{sub 4}Mn Bi{sub 2}: a = 1049.1 (1), c = 497.8 (1) pm, R = 0.031 for 176 structure factors; Ti{sub 4}FeBi{sub 2}: a = 1048.6(1), c = 493.3(1) pm, R = 0.013 (274 F values); Ti{sub 4}CoBi{sub 2}: a = 1050.6(2), c = 488.2(1) pm, R = 0.038 (472 F values); Ti{sub 4}NiBi{sub 2}: a = 1055.4(1), c = 481.4(1) pm, R = 0.020(373 F values), and 14 variable parameters each. The compounds are isotypic with V{sub 4}SiSb{sub 2}, a structure which is isopointal with U{sub 6}Mn and closely related to the structures of W{sub 5}Si{sub 3} and TlTe. All atoms have high coordination numbers. Unusual features of the structure are channels formed solely by the bismuth atoms and linear chains of the heavier transition metal ions with bond distances varying between 253.3 (Cr-Cr) and 240.7 pm (Ni-Ni). The electrical conductivities of Ti{sub 4}TBi{sub 2} (T= Fe,Co, Ni)--determined with a four-probe technique for sintered polycrystalline samples between 4 K and room temperature--indicate metallic behavior. The magnetic susceptibilities of the five compounds were determined with a SQUID magnetometer. Ti{sub 4}CrBi{sub 2}, T{sub i}4FeBi{sub 2}, and Ti{sub 4}NiBi{sub 2} are Pauli paramagnetic. The magnetic susceptibilities of Ti{sub 4}MnBi{sub 2} and Ti{sub 4}CoBi{sub 2} are strongly temperature dependent. The evaluation of these data according to a modified Curie-Weiss law suggests that both compounds contain one unpaired electron per formula unit. A brief discussion of chemical bonding in these compounds leads to the conclusion that considerable Ti-Ti bonding must be present in these bismuthides, in spite of the fact that the shortest Ti-Ti bonds are as long as 299 pm.

OSTI ID:
613703
Journal Information:
Journal of Solid State Chemistry, Vol. 133, Issue 2; Other Information: PBD: 1 Nov 1997
Country of Publication:
United States
Language:
English