skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation and behavior of carbonaceous mesophase in petroleum pitch

Thesis/Dissertation ·
OSTI ID:6108955

The phase behavior of conventional liquid crystals with nonmesomorphs was studied and compared to mixtures of mesophase pitches with aromatic molecules. Experimental phase diagrams of p-polyphenyls, p-azoxyanisol and various aromatic molecules were used to estimate the virtual mesophase-isotropic transition temperatures of the latter. The mesophase-isotropic transition in mesophase pitch, hidden by reactions, decreases the solubility of nonmesomorphs as would be predicted by the phase behavior of conventional liquid crystals. From vapor osmometry, gel permeation chromatography and elemental analysis, models of Ashland 240 and a solvent extracted Ashland 240 mesophase pitch were developed. The 3 to 5-ringed aromatic species contained within Ashland 240 are the polymerized subunits forming the branched molecules of the solvent extracted mesophase pitch. The effects of air blowing, sparging and heat soaking on the nature and constitution of mesophase formed from Ashland 240 pitch also were examined and compared to the solvent extracted pitch. The nature and consequently the behavior of the mesophase formed was found to be process dependent. The utility of mesophase pitches is derived largely from the local molecular orientation. Experimentally observed changes in local order as a function of temperature and time at temperature were attributed to the hidden mesophase-isotropic transition temperature and the reactions which mask this transition. The orientation, relaxation, and stabilization of locally ordered subunits into an overall preferred orientation was examined by melt spinning mesophase pitches into fibers.

Research Organization:
Rensselaer Polytechnic Inst., Troy, NY (USA)
OSTI ID:
6108955
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English