skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Size distributions of submicrometer aerosols from cooking

Journal Article · · Environment International; (United States)
; ;  [1]
  1. National Taiwan Univ., Taipei (Taiwan, Province of China)

Although gas stove usage varies from country to country, it is still one of the major indoor combustion sources. In order to assess the health effects of using gas stoves, the physical characteristics of the particle emissions from cooking were conducted in a first-floor apartment in the Taipei area. The particle size distributions from scrambling eggs, frying chicken, and cooking soup were measured in the kitchen by a high resolution particle sizer, which could measure the particles in the size range of 0.01 [mu]m to 1 [mu]m. The concentrations of the submicrometer particles increased significantly from 15,000 cm[sup [minus]3] to 150,000 cm[sup [minus]3] during cooking. Additionally, the ultrafine particles constituted 60%--70% of the total submicron aerosols. The changes in the size distributions and the concentrations of the submicrometer aerosols before, during, and after the aerosol generations were compared. On the average, the median diameters of scrambling eggs, frying chicken, cooking soup, and of the background conditions were 40 nm, 50 nm, 30 nm, and 70 nm, respectively. Regarding the surface area-weighted size distributions, the surface median diameters of the four situations were 180 nm, 300 nm, 150 nm, and 220 nm, respectively. Furthermore, the volume median diameters in the conditions mentioned above were almost similar, namely 300--350 nm. 10 refs., 6 figs., 2 tabs.

OSTI ID:
6099895
Journal Information:
Environment International; (United States), Vol. 19:2; ISSN 0160-4120
Country of Publication:
United States
Language:
English