skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cytotoxicity and bioactivation mechanism of benzyl 2-chloro-1,1,2-trifluoroethyl sulfide and benzyl 1,2,3,4,4-pentachlorobuta-1,3-dienyl sulfide

Journal Article · · Chem. Res. Toxicol.; (United States)
DOI:https://doi.org/10.1021/tx00001a007· OSTI ID:6065796

The metabolism and cytotoxicity of benzyl 1,2,3,4,4-pentachlorobuta-1,3-dienyl sulfide (1) and benzyl 2-chloro-1,1,2-trifluoroethyl sulfide (2) were studied as an alternative test of the hypothesis that the toxicity of the cysteine S-conjugates S-(pentachlorobutadienyl)-L-cysteine and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine is associated with their metabolism to unstable thiols; the expectation was that the benzyl sulfides 1 and 2 would undergo cytochrome P-450 dependent benzylic hydroxylation and that the intermediate hemimercaptals would eliminate unstable, cytotoxic thiols. This expectation was realized: 1 and 2 were cytotoxic in isolated rat hepatocytes. The cytotoxicity of 1 was greater in hepatocytes from phenobarbital-treated rats compared with control rats and in male then in female rats and was inhibited by carbon monoxide and 2-(N,N-diethylamino)ethyl 2,2-diphenylvalerate HCl (SKF 525-A). Benzyl sulfides 1 and 2 were metabolized to benzaldehyde by rat hepatic microsomal fractions and by a purified, reconstituted cytochrome P-450/sub PB-B/ system. Benzaldehyde was not cytotoxic. These results provide support for the hypothesis that benzyl sulfides 1 and 2 and the corresponding cysteine S-conjugates yield unstable thiols, which may give rise to acylating agents or to stable, but toxic, terminal products that are responsible for the cytotoxic effects of benzyl sulfides and cysteine S-conjugates.

Research Organization:
Univ. of Rochester, NY (USA)
OSTI ID:
6065796
Journal Information:
Chem. Res. Toxicol.; (United States), Vol. 1:1
Country of Publication:
United States
Language:
English